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RESURRECTION OF THE BOHR/SOMMERFELD

THEORY OF ATOMIC STRUCTURE

[4]

THE ADDITION OF

SMALL RELATIVISTIC CORRECTION TERMS

INCORPORATING THE LAMB SHIFT.

Peter G.Bass.

ABSTRACT.

The Bohr/Sommerfeld theory of atomic structure, as so far re-stated in [7], [8] and [9], is herein
further developed to incorporate small relativistic energy correction terms that lead to the Lamb
Shift. These terms are shown to be due to primarily two causes, (i) the distributed nature of
electron charge, and (ii) the dynamic distance of the nucleus from the central point of orbital
rotation. The first of these, (i), is augmented by consideration of the nature of the electron spin
matter wave radius.

1 Introduction.

The Lamb Shift is a very small difference in the orbital energies of the s and p(-) orbitals, primar-
ily in the 2nd shell although it is also apparent down to at least shell 8. In the modern quantum
mechanics/quantum electrodynamics theory of atomic structure, the Lamb Shift is attributed to
changes in the electron self energy resulting from its interaction with fluctuating electric and
magnetic fields that contribute to the zero point energy of the vacuum. Thereby the purported
potentiality of the electron to emit and re-absorb virtual photons, which contribute to electron self
energy, result in the value of this parameter being different in different orbitals, [1], [2], [3], [4].

In the resurrected Bohr/Sommerfeld theory presented here, because the electron is treated as
a real physical particle, albeit with a dual corpuscular/matter wave existence, recourse to quantum
electrodynamic phenomena such as described above, to explain the Lamb Shift, is not necessary
as other simpler physical causes become apparent.
In this resurrected theory, the development to date has treated both the nucleus and, more partic-
ularly, the electron as spinning point charges. When the electron is afforded finite dimensions, in
order that it subsequently conforms to the spin angular momentum criteria, especially in circular
orbits, it will be proposed that its spin matter wave radius must become a variable that is to be
determined. When this is coupled with the introduction of the concept that the electron charge is
distributed uniformly on its outer surface, a small additional energy term is created, of relativistic
magnitude, that must be added to the fine structure orbital energy levels.
In addition to the above, the development to date, while incorporating the finite mass of the
nucleus, has only partly taken account of the fact that due to this finite mass, it, together with
the electron, will orbit about a central point of rotation. The ratio of the distance of the nucleus
from this central point of rotation, to that of the electron, will be the inverse of the ratio of their
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masses. Augmenting this is the fact that, as shown in [9], the spin - orbit magnetic dipole coupled
precession rate of the nucleus is significantly greater than that of the electron. When allowance for
these latter factors is introduced, a further small additional energy term of relativistic magnitude
results that is also to be added to the fine structure orbital energy levels.
When these extra terms are introduced the overall orbital energy levels are seen to incorporate the
Lamb Shift. The resulting energy levels and emission spectra so obtained can then be compared
in detail with those in [5], which is believed to be the most accurate published data on outer shell
single electron atoms.

Note that in the mathematical derivations in this paper, a parameter will only be defined if it
has not previously been so in earlier papers in this series, i.e. [6], [7], [8] and [9].

2 The Energy Correction Term Source Components.

2.1 Derivation of the Central Coulomb Force Taking Into Account the Distributed

Nature of the Spinning Electron Charge.

In this derivation it is to be noted that because of the high spin rate of the electron at the point of
orbital transition, account must be taken of the Lorentz - Fitzgerald contraction of circumferential
dimensions.
The derivation here will be restricted to the electron, similar effects generated by the nucleus are
discussed in Section 2.4.
Consider Fig. 2.1 below as representative of a spinning electron in any orbital.
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Fig. 2.1 - The Spinning Electron.

The charge on the nucleus is +Ze.

The surface charge density on the electron is -∆e.

The distance between the centre of the two particles is r.
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The area of the electron elemental at rest is

∆Λ = Γ2
e sin θdθdφ (2.1)

Where

Λ is the surface area of the electron

Γe is the matter wave radius of the electron, (strictly this parameter only applies when
the electron is rotating, but for the purpose of this analysis can be introduced at this
point).

and all other parameters are as shown in Fig 2.1.
With the electron shell spinning at the high angular rate of eωsp as shown, all circumferential
dimensions will be subject to Lorentz-Fitzgerald contraction. Thus the surface area of the electron
elemental, becomes

∆Λ∗ = Γ2
e sin θ

(
1− eω

2
spΓ

2
e sin2 θ

c2

)1/2

dθdφ (2.2)

Where

c is the velocity of light.

In [8] it was proposed that electron orbit shell transitions took place via the emission of a photon
because the surface velocity of the circumference of the spinning electron tended to exceed the
terminal velocity, (∼ the velocity of light), in the Relativistic Domain D0, (Pseudo-Euclidean
Space-Time), (see [10] for an explanation of this). Thus in (2.2) above, at the point of an orbit
shell transition

eωspΓe = c (2.3)

so that (2.2) becomes
∆Λ∗ = Γ2

e sin θ cos θdθdφ (2.4)

Therefore the coulomb coupling energy between the nucleus and the electron elemental is

∆Ecoul = −Ze∆eΓ2
e sin θ cos θdθdφ

l1
(2.5)

It is now necessary to determine the distance l1 which must also take account of Lorentz-Fitzgerald
contraction of circumferential dimensions associated with the electron. From Fig. 2.1

l1 =
(
l23 + l22

)1/2
(2.6)

Where
l2 = Γe cos θ (2.7)

In (2.6)
l3 =

(
l24 + l25

)1/2
(2.8)

and
l4 = r − l6 (2.9)

Where
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r is the distance between the centre of the two particles.

Then
l5 = Γe sin θ cos θ cos φ (2.10)

and
l6 = Γe sin θ cos θ sin φ (2.11)

In these last two equations, (2.10) and (2.11), the effects of Lorentz-Fitzgerald contraction of
circumferential dimensions have been incorporated. Details of this are shown in Appendix C.
Substitution of (2.9), (2.10) and (2.11) into (2.8) gives

l3 =
{

(r − Γe sin θ cos θ cos φ)2 + Γ2
e sin2 θ cos2 θ sin2 φ

}
1/2 (2.12)

Which reduces to
l3 =

(
r2 − 2rΓe sin θ cos θ cos φ + Γ2

e sin2 θ cos2 θ
)1/2

(2.13)

Substitution of (2.13) and (2.7) into (2.6) then gives

l1 =
(
r2 − 2rΓe sin θ cos θ cosφ + Γ2

e sin2 θ cos2 θ + Γ2
e cos2 θ

)1/2
(2.14)

Which in turn reduces to

l1 = r

(
1 +

Γ2
e

r2
− 2

Γe

r
sin θ cos θ cosφ− Γ2

e

r2
sin4 θ

)1/2

(2.15)

So that in (2.5) this gives for the elemental coupling energy

∆Ecoul = − Ze∆eΓ2
e sin θ cos θdθdφ

r

(
1 + Γ2

e

r2 − 2Γe
r sin θ cos θ cos φ− Γ2

e

r2 sin4 θ

)1/2
(2.16)

In (2.16), because r >> Γe, the denominator can be binomially expanded retaining only terms
up to 1/r3. This then yields

∆Ecoul = −Ze∆eΓ2
e sin θ cos θ

r




1− Γ2
e

2r2 + Γe
r sin θ cos θ cos φ+

Γ2
e

2r2 sin4 θ + 3Γ2
e

2r2 sin2 θ cos2 θ cos2 φ


 dθdφ (2.17)

Integrating over the complete electron spherical shell

c©P.G.Bass 4 P5 ver. 1.1.2
August 2011



c©P.G.Bass August 2006

Ecoul = −2Ze∆eΓ2
e

r

∫ 2π

φ=0

∫ π/2

θ=0




(
1− Γ2

e

2r2

)
sin θ cos θ + Γe

r sin2 θ cos2 θ cosφ+

Γ2
e

2r2 sin5 θ cos θ + 3Γ2
e

2r2 sin3 θ cos3 θ cos2 φ


dθdφ (2.18)

Where in the integral with respect to θ, advantage of symmetry has been taken to simplify the
integration process. The integral with respect to φ is simple and is taken first to yield

Ecoul = −4πZe∆eΓ2
e

r

∫ π/2

θ=0





(
1− Γ2

e

2r2

)
sin θ cos θ + Γ2

e

2r2 sin5 θ cos θ+

3Γ2
e

4r2 sin3 θ cos3 θ





dθ (2.19)

In Appendix B it is shown that the surface area of a sphere, spinning such that its circumfer-
ential velocity tends to the velocity of light is exactly half that when at rest. Incorporating this
into (2.19) yields

Ecoul = −2Ze2

r

∫ π/2

θ=0





(
1− Γ2

e

2r2

)
sin θ cos θ + Γ2

e

2r2 sin5 θ cos θ+

3Γ2
e

4r2 sin3 θ cos3 θ





dθ (2.20)

Evaluation of this final integral gives

Ecoul = −Ze2

r

(
1− 5Γ2

e

24r2

)
(2.21)

This relationship will be further embellished in the next Section via the derivation of the parameter
r.

2.2 Derivation of the Effect of the Dynamic Distance of the Nucleus From the

Centre of Orbital Motion.

It was shown in [9] that due to the manner in which spin-orbit coupling energy was distributed,
the precession rate of the nucleus about the central point of orbital rotation would be considerably
greater than that of the electron. The geometry is shown in Fig. 2.2 below.
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Fig . 2.2 - Electron/Nucleus Orbit Geometry.

By the cosine rule
r2 = r2

e + r2
p − 2rerp cos (π − φp) (2.22)

Which reduces to
r2 = r2

e + r2
p + 2rerp cos φp (2.23)

In view of the increased angular rate of the orbit of the nucleus, with the electron frozen in
the position shown in Fig. 2.2, Eq.(2.23) can be restated as

r2 = r2
e + r2

p + 2rerp cos ωpt (2.24)

Where

ωp is the angular rate of the proton nucleus.

To determine the effect of this dynamic distance between the two particles, the average of (2.24)
around the proton orbital is taken thus

< r >= re
ωp

2π

∫ 2π/ωp

0

(
1 +

r2
p

r2
e

+ 2
rp

re
cos (ωpt)

)1/2

dt (2.25)

Expanding the square root binomially, (re >> rp), and retaining terms only up to 1/r2
e gives

< r > = re
ωp

2π

∫ 2π/ωp

0

(
1 +

r2
p

2r2
e

+
rp

re
cos (ωpt)−

r2
p

2r2
e

cos2 (ωpt)

)
dt (2.26)
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and this evaluates to

< r >= re

(
1 +

r2
p

4r2
e

)
(2.27)

Inserting this into (2.21) gives for the central coulomb force coupling energy

< Ecoul >= − Ze2

re

(
1 + r2

p

4r2
e

)





1− 5Γ2
e

24r2
e

(
1 + r2

p

4r2
e

)2





(2.28)

Expressing this as

< Ecoul > = −Ze2

re





(
1 +

r2
p

4r2
e

)−1

− 5Γ2
e

24r2
e

(
1 +

r2
p

4r2
e

)−3


 (2.29)

Again because re >> rp both terms inside the main bracket can be binomially expanded retaining
only terms up to 1/r2

e thus

< Ecoul >= −Ze2

re

(
1− r2

p

4r2
e

− 5Γ2
e

24r2
e

)
(2.30)

Removing the main central force term from (2.30) leaves the correction terms only thus

< Ecorr >=
Ze2

r3
e

(
r2
p

4
+

5Γ2
e

24

)
(2.31)

In Section 3.0 this expression will be converted to a form suitable for numerical computation
of values, and therefore also suitable for addition to [9], Eq. (3.39), to produce the complete
expression for orbital energy of the fine structure. Prior to that, Γe must first be determined.

2.3 Derivation of the Electron Spin Matter Wave Radius, to Meet the Spin

Angular Momentum Quantum Criteria.

The reason for the necessity of this parameter, which is primarily apparent in the first two or-
bit shells, is explained as follows.
When, via the mechanism proposed in [8], a spinning electron makes a transition into any circular
orbital, because there is no spin induction in a circular orbital, the value of angular spin rate
carried by the electron will remain unchanged. At the same time if the spin angular momentum
does not meet the quantum criteria, the only parameter that can vary in order to meet this is
the electron spin matter wave radius, and it is proposed that this parameter thereby increases
accordingly towards meeting this criteria.
In any elliptic orbital, exactly the same effect will take place but in addition, due to spin induction,
the magnitude of spin angular rate will also increase, both parameters thereby contributing to
meeting the spin angular momentum quantum criteria.

c©P.G.Bass 7 P5 ver. 1.1.2
August 2011



c©P.G.Bass August 2006

Also it will be seen that this effect is not only significant in these orbital energy correction terms,
but is also central to the manner in which orbital transitions are initiated. These issues will be
further discussed in detail in Section 5.4.
To determine the magnitude of the spin matter wave radius in each orbital, it is necessary to derive
a precise expression for the electron spin angular momentum, which can then be equated to the
quantum criteria. The resulting expression can then be solved for the spin matter wave radius.
This is pursued as follows.

Consider again Fig. 2.1. If the mass surface density of the electron shell is ∆m
/
e, then the rest

mass of the elemental is

∆me = ∆m/
e
Γ2

e sin θdθdφ (2.32)

The spin velocity of the elemental is

evsp = eωspΓe sin θ (2.33)

and so the relativistically adjusted mass of the elemental is

∆m∗
e =

∆m/
e
Γ2

e sin θdθdφ
(

1− eω
2
spΓ

2
e sin2 θ

c2

)1/2
(2.34)

Finally, the relativistically adjusted spin angular momentum of the elemental is then given by

∆M∗
e = eωsp∆m/

e
Γ4

e sin3 θdθdφ
(

1− eω
2
spΓ2

e sin2 θ

c2

)1/2
(2.35)

In evaluating the integral of (2.35), two problems arise, first, the Lamb Shift is, in the low orbit
shells, very sensitive to this particular process and it is therefore necessary to obtain as precise a
solution as possible. Because the integration of (2.35) over the surface of the electron shell involves
a version of the complete elliptic integral of the first kind, its exact evaluation in terms of analytic
functions is not possible. Secondly, in order to determine values, it is clearly necessary to know the
value of eωsp and a method of determining this parameter to the required accuracy and precision
is not clear. Consequently, because of these problems, an empirical method of completing the
solution must be adopted as follows.
First perform a binomial expansion of (2.35) and write its integration as

M∗
e = eωsp∆m/

e
Γ4

e

∫ 2π

φ=0

∫ π

θ=0

(
sin3 θ +

eω
2
spΓ2

e

2c2
sin5 θ − 3

8
eω

4
spΓ4

e

c4
sin7 θ + · · ·

)
dθdφ (2.36)

Perform the first simple integral with respect to φ and, taking advantage of symmetry, write
the result as

c©P.G.Bass 8 P5 ver. 1.1.2
August 2011



c©P.G.Bass August 2006

M∗
e = 4πeωsp∆m/

e
Γ4

e

∫ π/2

θ=0

(
sin3 θ +

eω
2
spΓ2

e

2c2
sin5 θ − 3

8
eω

4
spΓ4

e

c4
sin7 θ + · · ·

)
dθ (2.37)

Now integrate with respect to θ retaining all terms to give

M∗
e = 4πeωsp∆m/

e
Γ4

e

(
2
3

+
4
15

eω
2
spΓ

2
e

c2
− 6

35
eω

4
spΓ

4
e

c2
+ · · ·

)
(2.38)

and this can be written

M∗
e = 4πeωsp∆m/

e
Γ4

e

(
2
3

+
∞∑

k=2

(−1)k 2k

(2k − 1) (2k + 1)

(
ωspΓe

c

)2(k−1)
)

(2.39)

From Appendix B it is seen that when eωspΓe → c, the surface area of the spinning electron ap-
proaches half that of its rest mass value. Therefore incorporating this and putting eωspΓe = k//c

in (2.39) gives

M∗
e =

4
3
k//cΓeme

(
1 +

3
2

∞∑

k=2

(−1)k 2k

(2k − 1) (2k + 1)
k//2(k−1)

)
(2.40)

and the restrictions on k// such that the solution converges to a positive mean value are that
(i) its value must be close to unity and, (ii) it must, when (2.40) is equated to the spin angular
momentum quantum criteria, enable a unique solution for Γe such that the Lamb Shift, in all
orbitals in which it is apparent, is correctly determined.
Thus equating (2.40) to the spin angular momentum quantum criteria and solving for Γe gives

Γe =
3 ensph

8πk//cme

(
1 + 3

2
∞∑

k=2

(−1)k 2k
(2k − 1)(2k + 1)k//2(k−1)

) (2.41)

In (2.41) the summation, with suitable empirical values of k// must be taken to sufficient terms
such that it has completely converged. This will then provide a value of Γe for each orbital for
insertion in (2.31). This final evaluation is developed in Section 3.0.

2.4 The Distributed Nature of the Charge on the Nucleus.

To some extent the effect of the nucleus has already been accomplished in that account has been
taken of the distance of it from the central point of orbital rotation. However, the nucleus also
carries a charge and the question arises as to whether the distributed nature of this charge affects
orbital energy in the same manner as that of the electron. There is no doubt that this must be
so but because, in the case of hydrogen, the nucleus is so much smaller than the electron, its
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charge distribution contribution is not apparent as a fine structure correction. This would not
necessarily be the case in other atoms/ions in which the nucleus contained additional protons, as
well as neutrons. Consequently, the theoretical relationships developed herein from this point on
are strictly only applicable to hydrogen.

3 Determination of the Orbital Energy Correction Terms.

3.1 The Energy Correction Term Due to the Dynamic Distance of the Nucleus

from the Central Point of Orbital Rotation.

Extracting this term from (2.31) gives

< Ecorr,rp > =
Ze2r2

p

4r3
e

(3.1)

In [9], Eq.(3.30) it was shown that

< re > =
Le

(1− ε2)1/2
=

M2
e,j

Ze2me (1− ε2)1/2
=

nnjh
2

4π2Ze2me
(3.2)

By similar reasoning concerning the orbit of the nucleus about the central point of rotation, it
is proposed that

< rp > =
Lp

(1− ε2)1/2
=

M2
p,j

Ze2mp (1− ε2)1/2
=

nnjh
2

4π2Ze2mp
(3.3)

So that
< r2

p >

< r3
e >

=
4π2Ze2m3

e

nnjh2m2
p

(3.4)

and so in (3.1) this gives

< Ecorr,rp > =
π2Z2e4m3

e

nnjh2m2
p

(3.5)

and for the purposes of combining with previous results and for numerical computation (3.5)
can be re-written

< Ecorr,rp > =
hRhyZ2

n2

κ2Z2

n2

(
m2

e

2κ2Z2m2
p

n3

nj

)
(3.6)

3.2 The Energy Correction Term Due to the Distributed Nature of Electron

Charge as Augmented by its Spin Matter Wave Radius.

Extracting this term from (2.31) gives

< Ecorr,Γe > =
5Ze2Γ2

e

24r3
e

(3.7)
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Insertion of (3.2) gives

< Ecorr,Γe > =
40π6Z4e8m3

eΓ2
e

3n3n3
jh

6
(3.8)

and for the purposes of combining with previous results and for numerical computation (3.8)
can be re-written

< Ecorr,Γe
> =

hRhyZ2

n2

κ2Z2

n2

(
5π2m2

ec
2Γ2

e

3h2

n

n3
j

)
(3.9)

In (3.9) the numerical value of Γe in all orbitals is determined from (2.41) by insertion of appro-
priate values for k// and taking the summation to 200 terms to ensure convergence. In performing
this evaluation it is to be noted that any spherical body possessing mass, if spinning at a high
enough angular rate, will be subject to centrifugal force. Unless such a body is infinitely rigid it
will consequently distort by expanding normal to the axis of rotation. It is necessary to allow for
this condition here and an allowance of ∼ +7.5% has been inserted to cover the centrifugal force
expansion of Γe due to its high spin rate. This is not in conflict with the Lorentz - Fitzgerald
contraction of the circumference because Γe is normal to the direction of spin motion.
In the above allowance for centrifugal distortion, and for the general determination of Γe, cognisance
has been taken of the requirement to optimise the orbital energy intervals so as to ensure that the
Lamb Shift in all orbitals was present. This will be discussed in more detail in Sections 5 and 6
below.
The result of this evaluation of Γe for all orbitals in the first eight shells are shown in Table 3.1
below.
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n Eccentricity
Electron Matter Wave Radius Γe

ensp = +0.5 Orbitals ensp = - 0.5 Orbitals State

8 0 k(+) 1.275E-11 N/A

Γe at Point of Transition

8 0.4841 i(+) 3.50E-13 k(-) 3.50E-13
8 0.6614 h(+) 3.50E-13 i(-) 3.50E-13
8 0.7806 g(+) 3.50E-13 h(-) 3.50E-13
8 0.866 f(+) 3.50E-13 g(-) 3.50E-13
8 0.927 d(+) 3.50E-13 f(-) 3.50E-13
8 0.9682 p(+) 1.276E-11 d(-) 3.50E-13
8 0.9922 s 1.325E-11 p(-) 3.50E-13
7 0 i(+) 1.275E-11 N/A
7 0.5151 h(+) 3.50E-13 i(-) 3.50E-13
7 0.6999 g(+) 3.50E-13 h(-) 3.50E-13
7 0.8207 f(+) 3.50E-13 g(-) 3.50E-13
7 0.9035 d(+) 3.50E-13 f(-) 3.50E-13
7 0.9583 p(+) 1.276E-11 d(-) 3.50E-13
7 0.9897 s 1.325E-11 p(-) 3.50E-13
6 0 h(+) 1.275E-11 N/A
6 0.553 g(+) 3.50E-13 h(-) 3.50E-13
6 0.745 f(+) 3.50E-13 g(-) 3.50E-13
6 0.866 d(+) 3.50E-13 f(-) 3.50E-13
6 0.943 p(+) 1.276E-11 d(-) 3.50E-13
6 0.986 s 1.325E-11 p(-) 3.50E-13
5 0 g(+) 1.275E-11 N/A
5 0.6 f(+) 3.50E-13 g(-) 3.50E-13
5 0.8 d(+) 3.50E-13 f(-) 3.50E-13
5 0.917 p(+) 1.276E-11 d(-) 3.50E-13
5 0.98 s 1.325E-11 p(-) 3.50E-13
4 0 f(+) 1.275E-11 N/A
4 0.661 d(+) 3.50E-13 f(-) 3.50E-13
4 0.866 p(+) 1.276E-11 d(-) 3.50E-13
4 0.968 s 1.325E-11 p(-) 3.50E-13
3 0 d(+) 1.275E-11 N/A
3 0.745 p(+) 1.276E-11 d(-) 3.50E-13
3 0.943 s 1.325E-11 p(-) 3.50E-13
2 0 p(+) 1.33E-11 N/A

2 0.866 s 1.37817E-11 p(-) 3.50E-13 s(+) Meta-Stable

1 0 s 1.36E-11 N/A Stable

Table 3.1 - Γe for Electron Orbitals Up to Shell 8.

It is emphasised that other than for orbitals 2s and 1s, these values only apply at the point of
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transition. Also, some of the values of Γe so determined are considerably greater than the physical
radius of a free electron and it is therefore important to remember that these values only apply to
the spin matter wave radius of electrons extant within the structure of the hydrogen atom.
The further significance of the values determined for Γe in Table 3.1 will also be discussed in Section
5.

4 Addition of the Energy Correction Terms to the Fine Structure Energy Levels.

The á prioŕı relationship for the fine structure energy levels is given by [9], Eq.(3.39) repeated here
for convenience

eEor = −hRhyZ2

n2


1 +
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
 (4.1)

Adding the orbital energy correction terms, (3.6) and (3.9), to (4.1) provides a new complete
relationship for the electron fine structure orbital energy as

eEor = −hRhyZ2
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(4.2)

This relationship is of course, as previously stated, despite the presence of Z, only applicable
in fine detail to hydrogen. It is also subject to the Selection Rules as defined in [8], and to the
parametric quantisation of Γe as determined in Table 3.1. Subject to these restrictions it is used to
produce the energy levels and emission spectra for hydrogen, (vacuum and for λ > 2000Å, air), as
presented in Appendix A and which, with all other pertinent results, are discussed in detail below.

5 Discussion of Results.

With the development and addition of the energy correction terms, incorporating the Lamb Shift,
in this paper, the resurrection of the Bohr/Sommerfeld theory of atomic structure has reached a
state whereby a direct comparison of the achieved results may be made with data published in the
literature, in particular, [5]. This reference was, in part, compiled from [12] and in doing so the
results have been truncated down to four and three decimal places. Nevertheless, for the purpose
of this comparison it is assumed that [5] are the most accurate published data for the electron
orbital energy levels and emission spectra for hydrogen.
As stated previously, the development here has, in the interests of brevity and clarity been re-
stricted to hydrogen and it is on the results for that element that the ensuing discussion entirely
concentrates.
The results presented in Appendix A should be reviewed in depth to fully appreciate this discussion.
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5.1 The Spectral Signature.

The primary results here are those for the emission spectra resulting from transitions from any
permitted orbital to the ground state. These spectra, as quoted in [5], are for transitions observed
in vacuum and as can be seen from Appendix A, for those orbitals shown, the results are in complete
agreement with those in [5]. That this is so not only provides credence to the concept with which
the energy correction terms incorporating the Lamb Shift have been developed in this paper but,
also to the prior parts of the theory presented in the earlier papers [6] to [9].
When reviewing all other spectra, it is noted that in [5] these are quoted as pertaining to spectra
observed in air. Consequently cognisance of the refractive index of air, Πair, has to be taken. To
ensure the comparison with [5] was specific to the different theoretical aspects only, Πair as used
here was calculated from [12], and is shown in Table A.2.
From the results of this comparison it can be seen that there is excellent agreement between the
two sources of data, Appendix A and [5]. Differences range from 0.0001Å, {4d(+) → 2p(+)}, at
4861Å, (2.06E-6)%, to 0.2356 Å, {8k(+) → 7i(+)}, at 190567Å, (1.24E-4)%. This very small level
of difference would be due to the very small variances in the values of the constants used in this
series of papers, and those in [5] and [12]. Also, in this paper, only a single value of Πair has been
calculated for each set of transitions between individual orbit shells. This will introduce a small
variation across the orbitals in each shell. Finally, there are very small orbital energy differences
which may also contribute. These are discussed below.

5.2 The Energy Levels.

Comparison of orbital energy levels between those in Appendix A and those in [5], show there is
a very small difference in all orbit shells ranging from ∼ 0.0320cm−1, (3.89E-5)%, in shell 2 to ∼
0.0496cm−1, (4.50E-5)%, in shell 8. Within each shell there is a small variation about these values
according to orbital. These differences will in part be due to the slightly different values of the
constants used, (see Table A.1). However, the variances are all negative indicating that there is
still a small systemic difference between the two theories. This is not considered a very significant
point however, because the most important of the atomic structure attributes is the spectra, which
can be experimentally measured and thereby compared directly with theory. Nevertheless, it is
possible that the small difference in orbital energy above can be further reduced as discussed below
in Section 5.6.

5.3 The Lamb Shift.

The Lamb Shift is the s(+) → p(-) energy interval for those orbit shells in which this effect is
apparent. The short table below shows this interval for the first eight shells as a comparison
between [5] and the results in Appendix A.
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Shell
s(+) → p(-) Energy Interval, (cm−1)

[5] Appendix A

2 0.0353 0.0353

3 0.0105 0.0096

4 0.0044 0.0040

5 0.0023 0.0021

6 0.0013 0.0012

7 0.0008 0.0008

8 - 0.0005

Table 5.1 - Lamb Shift Intervals.

The result for the second shell is significant because the value of Γe for the 2s(+) orbital was
determined in conjunction with the 2p(-) orbital to give exactly the experimental difference value
for these orbitals, (0.0352834087 cm−1 or 1057.77Mc/s). The other applicable intervals for shells
three to eight in the above table are then predetermined by the need to meet both the spin angular
momentum quantum criteria and the conditions determining transition. These are further discussed
in Section 5.4 below.
As can be seen from the above table for the applicable orbital energy intervals in shells three to
eight there are some very small differences between [5] and the results in Appendix A. These will
be due to the same factors discussed above for the orbital energy differences. Improvement may
also be effected here via the discussion in Section 5.6.

5.4 The Electron Spin Matter Wave Radius and the Mechanics of Orbital Transition.

The discussion here will be aided by reference to Table 3.1 and Fig. 5.1. The latter shows two
plots. The first, (1), is a plot of eωsp vs Γe for when their product is equal to c, the velocity of
light, i.e. this is a plot of eωsp vs Γe at the point of orbital transition. The second plot, (2), is
a plot of eωsp vs Γe at the point when the electron spin angular momentum quantum criteria is
met. The important point about these plots is that they cross, at Γe ≈ 1.3409E-11cm, eωsp ≈
2.2358E+21rads/sec., i.e. at point A. It is this that determines which orbitals are ”unstable” and
result in a transition, and those which are stable, 1s(+), or ”meta-stable”, 2s(+). The manner in
which this is effected is examined in detail below.

c©P.G.Bass 15 P5 ver. 1.1.2
August 2011



c©P.G.Bass August 2006

F
ig

.
5.

1
-

e
ω

s
p
v
s

Γ
e

fo
r

(1
)

e
ω

s
p
Γ

e
=

c
,
an

d
(2

)
to

M
ee

t
th

e
S
p
in

A
n
gu

la
r

M
om

en
tu

m
Q

u
an

tu
m

C
ri

te
ri

a.

c©P.G.Bass 16 P5 ver. 1.1.2
August 2011



c©P.G.Bass August 2006

(i) Consider first the spin-up and spin-down orbitals other than the circular and s orbitals in Table
3.1. When an electron makes a transition into one of these orbitals, (to the left of Lines 1 and 2 in
Fig. 5.1), its spin will increase in magnitude, (+ or -), according to which quadrant of the orbital
it is in. At the same time its spin matter wave radius, Γe will also increase such that their product
tends towards providing conformance to the spin angular momentum quantum criteria. Before the
latter is accomplished however, the circumferential velocity of the electron reaches the velocity of
light, i.e. the product eωspΓe reaches Line 1, (above point A), in Fig. 5.1, and a further transition
occurs.
In the high shell numbers, (> 3rd), the spectra are relatively insensitive to the value of Γe in the
applicable orbitals and therefore the initial value of Γe determined for them is 3.50E-13 cm., just
above the widely quoted value of ∼ 2.818E-13 cm., the physical radius of the free electron. The
one exception is the 3p(+) orbital for which an initial value of 1.33E-11cm. has been determined,
giving the best fit with [5] for the applicable air spectra.

(ii) Now consider the circular orbitals other than the ground state, 1s orbital. When the electron
makes a transition into a circular orbital, it is not subject to spin induction for reasons discussed
in [8]. Consequently, the value of eωsp possessed by the electron will remain unchanged while it is
in these orbitals. Γe will therefore simply expand to meet the spin angular momentum quantum
criteria. Once again, before that criteria is satisfied the velocity of the electron circumferential
surface reaches the velocity of light and a further transition occurs.
The value of Γe determined for these circular orbitals is 1.33E-11 cm., for 2p(+) and 1.275E-11
cm. for the rest, which, in conjunction with the value for all other orbitals provides the best fit
with [5] for the applicable air spectra.

(iii) Now consider the s orbitals other than 1s and 2s. These orbitals only contain spin-up elec-
trons. When an electron makes a transition into one of these orbitals its spin angular rate and
spin matter wave radius will react as for the other elliptic orbitals discussed above and a further
transition takes place.
The value of Γe determined for these orbitals, 1.325E-11 cm., provides in conjunction with the
other orbitals discussed above the best fit for the Lamb Shift for the 3rd to 8th shell. The fact that
the spin angular rate is lower and the value of Γe higher at transition than in most other elliptic
orbitals so far discussed is believed due to the nature of the transition path into these orbitals.
This last point also affects the last two orbitals to be discussed, 1s and 2s.

(iv) The 2s orbital. This is the so called ”meta-stable” orbital. When an electron makes a tran-
sition into 2s, due to the characteristics of the insertion path, its spin, (+ve), will be low enough
such that Γe can increase to a value that, together with the spin induced increased angular rate,
provides conformance to the spin angular momentum quantum criteria. i.e. the product eωspΓe

reaches Line 2, (below point A), in Fig. 5.1. At that instant the electron is stable and can remain
so in the 2s orbital until it moves into the next quadrant whereupon its spin reverses and it has
made an internal shell transition to the 2p(-) orbital, (same ε and nj with ensp changing from +1/2
to -1/2 and n∗φ from +1/2 to +11/2). This phenomenon was presented and described in detail in [8].
Γe falls to its 2p(-) value as the electron passes through the dead zone and the spin reverses. The
electron can then make a normal 2p(-) → 1s ground state transition. This is proposed as the means
by which electrons escape from the 2s ”meta-stable” orbital. If this mechanism did not exist, in a
large volume of hydrogen, there would be two ionisation energies, one for ionisation from 1s, the
13.6eV existing level and one from the 2s orbital which would be ∼3.4eV.
The value of Γe determined for the 2s orbital is that at meta-stability, i.e. 1.37817E-11 cm., which
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in conjunction with that in the 2p(-) gives an orbital energy interval equivalent to the 1057.77Mc/s
Lamb Shift in shell 2 as mentioned in Section 5.3 above.

(v) Finally, consider the 1s ground state circular orbital. When an electron makes a transition
into the ground state, due to the characteristics of the insertion path its spin angular rate will be
sufficiently low so that Γe can increase to a value that results in their product providing confor-
mance to the spin angular momentum quantum criteria. As the ground state orbital is circular,
there is no spin induction and the electron is therefore permanently stable in this orbital.
The value determined for Γe, 1.36E-11 cm. is therefore that which gives the appropriate energy
correction in this orbital such that the spectral response for transitions directly into the ground
state from any permitted orbital is in agreement with [5] for the vacuum spectral lines.

5.5 Ionisation.

Any volume of hydrogen, irradiated at a level in excess of 13.6eV will ionise. To simulate this
using the mathematical formulation in the modern quantum mechanics version of atomic structure
theory, means raising the principle quantum number, n, to infinity. This in turn means that the
electron must be moved to an infinite distance from the proton before it becomes disassociated
from it. In reality of course this is not true as in the laboratory ionisation takes place within the
physical confines of laboratory equipment.

In the theory presented here, in order to simulate ionisation using (4.2), it is only necessary to
raise n to the values shown in the following table.

Orbital
Identifier

Orbital at
Ionisation

n

1 s(+); p(-) 6,742,908

2 p(+); d(-) 13,485,815

3 d(+); f(-) 20,228,723

4 f(+); g(-) 26,971,630

5 g(+); h(-) 33,714,538

6 h(+); i(-) 40,457,445

7 i(+); k(-) 47,200,353

8 k(+) etc 53,943,260

Table 5.3 - Ionisation Principle Quantum Numbers.

The reason is that all terms in (4.2) decrease in magnitude as n increases, but one term, that
for the energy correction term resulting from the dynamic distance of the proton from the central
point of orbital rotation, decreases slower than all other terms, (proportional to 1/n). This term
is positive and becomes the dominant term at the above values of n, i.e. the orbital energy has
become positive which means that the electron has become disassociated from the proton and the
atom has ionised. The above values of n at ionisation follows the orbital eccentricity pattern as
is seen by comparing Table 5.3 with [9] Table 3.1. The eccentricities of the above orbitals are
however very much closer to unity than in the reference. For instance, the apparent eccentricity in
the first entry in Table 5.3 is (1 - 2.199406639E-14)1/2. The apparent eccentricity of the orbital in
the last entry is (1 - 2.199406965E-14)1/2. The calculation of these virtually identical values, [9],
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Eq.(3.18), does not however, take into account the very small additional energy terms determined
in this paper which provide the difference to make ε exceed unity.
It is appropriate to designate the above ionisation quantum numbers as ni. It is a matter of interest
that the value of ni for any orbital can be calculated from the following simple formulae.

ni (k) = kni (1)− k
2 k even

ni (k) = kni (1)− (k−1)
2 k odd

Where,

k is the orbital identifier number in Table 5.3.

Finally, it should be obvious that ionisation cannot take place at any orbital with an eccentricity
less than those shown above.
The ionisation energy from the ground state in the resurrected Bohr/Sommerfeld theory presented
here is 13.59843288eV.

5.6 Summary.

This summary is to draw together, in simple form, the salient points reviewed above.

(i) The vacuum spectra determined here are in perfect agreement with those in [5], for shells
1 to 8 for all permitted transitions, (in Ångstroms to four decimal places).
Although not reported in Appendix A, spot checks of np(+) to 1s(+) spectral emissions were also
compared with [5] for shells 10, 20, 30, 40 and 50 again with perfect agreement.

(ii) The air spectra determined here are in agreement to within (1.24E - 4)% worst case with
those in [5] for shells 2 to 8 for all permitted transitions, (in Ångstroms to three decimal places).
Although not reported in Appendix A, spot checks of air spectral emissions for a number of ran-
dom transitions involving very high shell numbers were also compared with [5] with equal or better
accuracy to that quoted above.

(iii) The orbital energy levels determined here are in agreement to within typically (4.0E - 5)%
with those in [5] for shells 1 to 8, (in cm−1 to four decimal places).

(iv) The orbital energy level intervals determined here are in agreement from 0cm−1 to 0.0009cm−1

for the s to p(-) intervals, shells 2 to 7.

(v) In the dissertation on the mechanics of electron transitions, a means by which electrons ”es-
cape” from the meta-stable 2s(+) orbital was identified.

(vi) A central factor in the determination of an orbital energy level correction term due to the
distributed nature of electron charge, is the variability of the electron spin matter wave radius, a
necessity to achieve conformance with the spin angular momentum quantum criteria. This factor
is also central to the manner in which orbital transitions are initiated.

(vii) The orbital energy equation has been shown to incorporate the effect of ionisation of the
atom and permit the determination of the principle quantum number at ionisation for all orbitals.

c©P.G.Bass 19 P5 ver. 1.1.2
August 2011



c©P.G.Bass August 2006

5.7 Possible Further Additions/Improvements.

It was stated above that some of the differences between the results achieved here and those in [5]
could possibly be further reduced. The means by which that could be effected is threefold as follows.

(i) The Introduction of Magneto-Gyric Effects. - In [9] the derivation of orbital and spin mag-
netic dipoles assumed that both the electron and the proton nucleus were point source charges.
This tacitly assumed that that the so called Magneto-Gyric factors associated with these param-
eters were unity, (the ”2” associated with the spin magnetic dipole was shown to be due to a
coupling feature). If cognisance is taken of the fact that the charges on these two particles are
uniformly distributed on their surfaces, this will result in their Magneto-Gyric factors being very
slightly different from unity. This will in turn make a small adjustment to the orbital energy of
the electron which will then result in a similar adjustment to the spectral signature.

(ii) Optimisation of Πair, the Refractive Index of Air. - Although derived with a very high de-
gree of precision, only one value of Πair was used to calculate the air spectra in Table A.3 in the
transitions of one orbit shell to another. Account was not taken of the individual transitions from
the separate orbitals within each shell. To do so would result in an improvement in the calculated
air spectra in Appendix A to those in [5]. To effect this would mean deriving a very precise al-
gorithm that related Πair to spectral wavelength. To ensure sufficient precision, this derivation
would have to be based upon Table A.2 and interpolation around each point effected manually.

(iii) Optimisation of Γe, the Electron Spin Matter Wave Radius. - The values of Γe in (4.2) were
only effectively optimised for the first two orbit shells, n = 1 and 2, and 3p(+). Precise optimisation
for all other orbit shells was not fully explored, partially because it should only be attempted after
all systemic features have been incorporated, i.e. as in (i) and (ii) above. Subsequently, it may be
possible to further reduce differences in orbital energy and spectral signature between Appendix A
and [5] via this parameter.

The exploration of the three above potential improvements to the theory is planned.

6 Conclusions.

The results achieved in this series of papers to resurrect the Bohr/Sommerfeld old quantum theory
of atomic structure have been fully discussed and summarised in Section 5 above. These final
comments will therefore be restricted to the veracity of the overall development, and its one possibly
perceived point of contention, the manner of determination of the electron spin matter wave radius.

This theory is truly not just a resurrection of the old quantum theory of atomic structure,
because it recognises and uses throughout the development, the duality of the existence of mat-
ter. That combined with the old quantum theory enabled this entire development to be derived
from just two basic postulates, those of Planck’s quantum energy and de Broglie’s matter wave
quantum momentum. From the inception of these in [6] through to this paper, the mathematical
development, with the exception of the subject discussed below, has been rigorous, with no un-
sound assumptions, and in which the only approximations taken have been to discard third and
higher relativistic terms, that have a negligible impact on the results to the accuracy and precision
targeted.

The one exception to the above statement is the manner in which the spin matter wave radius
has been determined. In a theory of atomic structure in which the electron is treated as a real
physical particle, albeit with a dual corpuscular/wave function existence, and spin is a real param-
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eter, it is necessary to know with great precision all of the contributing attributes of that particle.
One of the critical requirements in this, and in fact also in the quantum mechanics version, is
that the electron conform to the spin angular momentum quantum criteria, howsoever the concept
of electron spin is defined. To do that with the electron as treated here, it is first necessary to
know accurately and precisely the value of electron spin angular rate. Secondly, bearing in mind
the manner in which electron transitions have been defined, the only manner in which the above
criteria can be met is, in conjunction with its spin rate, for the electron spin matter wave radius to
be a variable. Consequently, it is further necessary to know accurately and with adequate precision
the value of this parameter. With the electron as an integral part of an atom, there is no known
method with which either of these two parameters can be measured experimentally. Similarly, there
is no known way in which they can be determined to the accuracy and precision required purely
theoretically, even given the manner of spin inducement proposed in this series of papers. Accord-
ingly, it is therefore necessary to resort to the semi-empirical method of determination adopted
here. In doing so it is therefore not unreasonable to tailor the determination process to provide
results that match experimentally derived data. This of course is only acceptable, provided that
the determination process follows a logical procedure, that integrates smoothly with the rest of the
development. It is proposed that this is indeed the case here, as exemplified with particularly the
discussion of the initiation of the transition process in Section 5.4 above.

That point accepted, the results obtained here are in excellent agreement with those in the
literature. A detailed examination of them, and their numerical calculations, may be obtained
from the spreadsheets in which they are computed. See Appendix A.

Finally, any theory of atomic structure does not end with the development to the fine struc-
ture level and, in future papers, this theory will be further developed to the level of the hyperfine
structure, and to cover the concepts of transition probabilities and spectral intensities, as well as
investigation of the potential additions highlighted in the previous Section.

APPENDIX A

Emission Spectra for the First 7 Orbital Shells, (Down to the 3rd),

of Hydrogen, (as so far Developed).

This Appendix presents calculated emission/absorption spectra for the first 7 → 3 orbit shells of
hydrogen. They include the effects of relativistic mass correction, magnetic dipole coupling and
the Lamb Shift. The spectra are calculated using the formula

λ(n)(m) =
hc(

Eor(m) − Eor(n)

) (A.1)

together with the Selection Rules.

For spectra in which the wavelength is greater than 2000Å, (A.1) is divided by Πair, the refractive
index of air, to enable a direct comparison of the results with those in [5].
In (A.1), Eor(#) is given by (4.2) within which nj is given by [9], Eq.(3.20). Rhy is determined
from the generalised relationship

Rhy =
cR∞ {Zmp + (J − Z)mN}
{Zmp + (J − Z) mN + me} (A.2)
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In this and the other relationships referred to, the values of the parameters used are as shown
in the following Table A.1.

Parameter Name Value Units Ref.

h Planck’s Constant 6.6260693E-27 erg secs [11]

c Velocity of Light in Vac-
uum

2.99792458E+10 cm/sec [11]

Rhy Rydberg’s Constant for
Hydrogen

See (A.2) sec−1

R∞ Rydberg’s Constant for
Infinite Nuclear Mass

1.09737316E+5 cm−1 [11]

Z Atomic Number 1 for Hydrogen

J Mass Number 1 for Hydrogen

mp Proton Mass 1.67262171E-24 g sec2/cm [11]

mN Neutron Mass 1.6749278E-24 g sec2/cm [11]

me Electron Mass 9.10913826E-28 g sec2/cm [11]

e Electron/Proton Charge -/+ 4.8032044E-10 esu See Note 1

γp Proton magnetic moment
constant of proportional-
ity

2.79275 - [2]

δp Proton spin dipole
magnetisation constant of
proportionality

3.3558912 - [9]

Πair Refractive Index of Air See Table A.2 - Calculated from [12]

Table A.1 - Parameter Values.

Note 1:- Calculated from e = 1.60217653E-20 abcoulombs x c.

Also the following factors have been used to convert energy from ergs to cm−1.

Joules = 1E-7 ergs; eV = 6.24150948E+18 Joules; cm−1 = 8.065541E+3 eV

The values of Πair used, are shown in the following table, as calculated from [12].
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Wavelength Πair

3889 1.000283373820

3970 1.000282912237

4101 1.000282223812

4340 1.000281143049

4861 1.000279342657

6562 1.000276235841

9545 1.000274299185

10049 1.000274132698

10938 1.000273891534

12817 1.000273537699

18751 1.000273036604

19445 1.000273006377

21654 1.000272927044

26251 1.000272823218

37395 1.000272707134

40510 1.000272691823

46525 1.000272669382

74577 1.000272628864

75003 1.000272628349

123682 1.000272605744

190568 1.000272607289

Table A.2 - Πair vs Wavelength.

The only apparent anomaly in this table is that the last two entries appear reversed. This will
accentuate any differences to [5] with respect to the emission spectra at the wavelengths concerned.

The calculated orbital energy levels and transition emission spectra are shown below in Table
A.3 expressed as wavelengths in Ångstroms.
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The spreadsheet that produced Table A.3 covers a wider orbit shell range and is available for
download as:-

HydrogenSpectra.xls.

This spreadsheet is cell locked but contains a small area highlighted at the bottom of the 1st

sheet wherein a spot check of any desired transition can be performed via the input of just six
parameters in six unlocked cells. Ionisation levels can also be checked here.

Two other sheets are incorporated in this spreadsheet

(i) the relevant orbital energy levels and spectral wavelengths from [5], and

(ii) the differences in the values in (i) and the top sheet.

Note that this spreadsheet is a working document that has ”evolved” as the development in this
series of papers proceeded. Presentation has not therefore been aesthetically optimised.

APPENDIX B.

Surface Area of a Sphere Spinning Such That its

Circumferential Velocity is Equal to the Velocity of Light.

Repeating (2.4)
∆Λ∗ = Γ2

e sin θ cos θdθdφ (B.1)

Integrating, first with respect to φ yields

Λ∗ = 4πΓ2
e

∫ π/2

0

sin θ cos θdθ (B.2)

where advantage of symmetry with regard to θ has been incorporated.
Evaluation of (B.2) is simple and gives

Λ∗ = 2πΓ2
e (B.3)

This is exactly half the surface area of the sphere when at rest, the reduction being caused by the
Lorentz - Fitzgerald contraction of circumferential dimensions.

APPENDIX C.

Derivation of the Lorentz - Fitzgerald Contracted Dimensions l5 and l6 in Section 2.1.

Consider Fig. C.1 below. This is a plan view of a cross-section of Fig. 2.1 taken at the plane of
the elemental.

c©P.G.Bass 26 P5 ver. 1.1.2
August 2011



c©P.G.Bass August 2006

9

9

-

-

¼

dϕ ϕ
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Fig. C.1 - Plan View at Electron Elemental.

From the Figure
l = Γe sin θ cosφ sec ϕ (C.1)

So that
ldϕ = Γe sin θ cosφ sec ϕdϕ (C.2)

and therefore the Lorentz - Fitzgerald contracted element of l5 is given by

dl5 = Γe sin θ cosφ sec2 ϕ

(
1− eω

2
spl

2

c2

)1/2

dϕ (C.3)

Because, by far, the greater part of the contraction takes place at the perimeter, this process
can be greatly simplified by the approximation

dl5 = Γe sin θ cos φ sec2 ϕ

(
1− eω

2
spΓ2

e sin2 θ

c2

)1/2

dϕ (C.4)

The small error that this approximation introduces will be compensated out by way of the process
that determines the value of Γe.

When eωspΓe = c, (C.4) becomes

dl5 = Γe sin θ cos θ cos φ sec2 ϕdϕ (C.5)
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Integrating

l5 = Γe sin θ cos θ cosφ

∫ φ

0

sec2 ϕ dϕ (C.6)

which evaluates to
l5 = Γe sin θ cos θ sin φ (C.7)

Consequently, in Fig. 2.1,
l6 = l5 cot φ = Γe sin θ cos θ cos φ (C.8)
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