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PRECISE DETERMINATION OF THE

MULTIPLE ROOTS OF

HIGH ORDER POLYNOMIALS.

(1)

THE DIFFERENTIAL DIVISION

REMAINDER METHOD.

Peter G.Bass.

ABSTRACT

This paper presents a new method for the precise determination of the multiple roots of poly-
nomial equations of any order, n, greater than 2. The method, the Differential Division Remainder
Method, is applicable when any polynomial contains two roots in a variety of multiple root config-
urations.

1 INTRODUCTION.

There are many methods of determining the roots of polynomial equations, the majority of which
involve some form of iterative process. They all have varying degrees of success when the polynomial
contains only singular roots, or at most a pair of multiple roots, the rest being singular. However,
when the polynomial contains a high number of multiple roots, in a variety of configurations,
iterative methods all experience some difficulty in obtaining a solution with any degree of precision.
This is because such roots do not cross the abscissa, but lie tangential to it, and a process of finite
iteration cannot determine the precise point of contact.

The method of determination presented here, avoids this difficulty because it does not utilise
an iterative approach, and is purely analytic in nature. It is termed the Differential Division
Remainder Method, and is based upon the fact that if a polynomial is differentiated with respect
to its independent variable, and the differential is then divided into the original equation, the
remainder term ratios are quadratic functions of the primary multiple root. The process is an
extension of one briefly described in [2].

This extended method is applicable to polynomials of any order where they contain two roots
in a variety of multiple configurations. Also, irrespective of the order of the polynomial, imple-
mentation of the method is easily, and relatively quickly, effected via manual computation. Both
manual and computer implementation is discussed here.

2 Description of the Method.

2.1 Preamble.

The polynomial root configurations to which this method is applicable, for equations of order 3 to
10, is illustrated in Table 2.1 below. In this paper the most prolific root is termed the primary
root, rp, with all others the secondary root(s), rs.

c©P.G.Bass 1 M4 Version 1.0.0
January 2011



c©P.G.Bass January 2011

Order
Configuration of
Roots (rp + rs)

3
3 + 0
2 + 1

4

4 + 0
3 + 1
2 + 2

2 + 1 + 1

5

5 + 0
4 + 1
3 + 2

3 + 1 + 1

6

6 + 0
5 + 1
4 + 2

4 + 1 + 1
3 + 3

7

7 + 0
6 + 1
5 + 2

5 + 1 + 1
4 + 3

8

8 + 0
7 + 1
6 + 2

6 + 1 + 1
5 + 3
4 + 4

9

9 + 0
8 + 1
7 + 2

7 + 1 + 1
6 + 3
5 + 4

10

10 + 0
9 + 1
8 + 2

8 + 1 + 1
7 + 3
6 + 4
5 + 5

Table 2.1 - Root Configurations Applicable to the

Differential Division Remainder Method.

The configuration rp + 0 is included here as it completes the set and is conducive to the same
general analysis.
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Thus for polynomials of orders 3 to 10, a total of 39 root configurations can be analysed using
this method. These are the only configurations for which the remainder term ratios from the DDR
process are quadratic functions of the primary root. For other configurations, three or more sets
of multiple plus single roots, the remainder terms are cubic and higher functions of the primary
root and therefore not easily solvable.

2.2 Development of Specific Algorithms for Polynomial Orders of 3 to 10.

The simplest way of illustrating this method is to consider a generalised 7th order polynomial
containing 4 primary roots, x = −rp, and 3 secondary roots, x = −rs. Writing this polynomial
out in full gives

y = x7 + (4rp + 3rs) x6 +
(
6r2

p + 12rprs + 3r2
s

)
x5 +

(
4r3

p + 18r2
prs + 12rpr

2
s + r3

s

)
x4

+
(
r4
p + 12r3

prs + 18r2
pr2

s + 4rpr
3
s

)
x3 +

(
3r4

prs + 12r3
pr2

s + 6r2
pr3

s

)
x2+(

3r4
pr2

s + 4r3
pr2

s

)
x + r4

pr3
s

(2.1)

Writing this as

y = x7 + Ax6 + Bx5 + Cx4 + Dx3 + Ex2 + Fx + G (2.2)

its differential with respect to x is then

y/ = 7x6 + 6Ax5 + 5Bx4 + 4Cx3 + 3Dx2 + 2Ex + F (2.3)

Dividing (2.3) into (2.2) produces the following remainder terms

R5 = 2
7B − 6

49A2 coefficient of the x5 remainder.

R4 = 3
7C − 5

49AB coefficient of the x4 remainder.

R3 = 4
7D − 4

49AC coefficient of the x3 remainder.

R2 = 5
7E − 3

49AD coefficient of the x2 remainder.

R1 = 6
7F − 2

49AE coefficient of the x remainder.

R0 = G− 1
49AF constant remainder.

(2.4)

Only the first three remainder terms, R5, R4 and R3 are of interest initially. Substituting from
(2.1) for A,B, C and D in these terms gives

R5 = −12
49

(
r2
p − 2rprs + r2

s

)
R4 = −12

49
(
3r3

p − 4r2
prs − rpr

2
s + 2r3

s

)
R3 = −12

49
(
3r4

p − 8r2
pr2

s + 4rpr
3
s + r4

s

)
(2.5)

So that the remainder term ratios are
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R4
R5

= 3rp + 2rs

R3
R5

= 3r2
p + 6rprs + r2

s

(2.6)

From the first part in (2.6)

rs =
1
2

(
R4

R5
− 3rp

)
(2.7)

Substituting (2.7) into the second part of (2.6) produces the following quadratic

r2
p −

2
5

R4

R5
rp −

1
15

(
R4

R5

)2

+
4
15

R3

R5
= 0 (2.8)

From which, using the standard formula for quadratics

rp =
1
5

R4

R5
±

[
8
75

(
R4

R5

)2

− 4
15

R3

R5

]1/2

(2.9)

Verification that this is indeed a root of the equation in question is then obtained by dividing (2.9)
into the original equation, (2.1), to obtain a zero remainder. Subsequent to such verification, the
secondary root is obtained, in this case, from (2.2) and (2.9) as

rs =
1
3

(A− 4rp) (2.10)

Note that in (2.9) the positive square root gives the value of rp when rp > rs and vice versa for
the negative square root.
This analysis applied to all the configurations of Table 2.1 produces the following Table of algo-
rithms for their primary and secondary roots
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Notes to Table 2.2.

Note 1. - The positive square roots gives the larger of the polynomial roots, the negative square
root the smaller.

Note 2. - These algorithms for rp for an (n-2) + 1 + 1 configuration are the same as the al-
gorithm for an (n-2) + 2 configuration, and consequently, if rp is verified, for complete verification,
the secondary/tertiary roots must also be verified by division into the original equation.

Note 3. - The secondary and tertiary roots for the (n-2) + 1 + 1 configuration are given in the
following table.

Note Root Configuration Secondary and Tertiary Roots

3 2 + 1 + 1
{

A− 2rp ±
[
A2 + 4Arp − 8r2

p − 4B
]1/2}

/2

4 3 + 1 + 1
{

A− 3rp ±
[
A2 + 6Arp − 15r2

p − 4B
]1/2}

/2

5 4 + 1 + 1
{

A− 4rp ±
[
A2 + 8Arp − 24r2

p − 4B
]1/2}

/2

6 5 + 1 + 1
{

A− 5rp ±
[
A2 + 10Arp − 35r2

p − 4B
]1/2}

/2

7 6 + 1 + 1
{

A− 6rp ±
[
A2 + 12Arp − 48r2

p − 4B
]1/2}

/2

8 7 + 1 + 1
{

A− 7rp ±
[
A2 + 14Arp − 63r2

p − 4B
]1/2}

/2

9 8 + 1 + 1
{

A− 8rp ±
[
A2 + 16Arp − 80r2

p − 4B
]1/2}

/2

Table 2.3 - Secondary and Tertiary Roots for an (n-2)+1+1 Configuration.

Thus it is clear that if a polynomial contains a set of multiple roots as in Table 2.1, subsequent
to the determination of the Differential Division Remainder terms, (see below), the roots can very
easily and quickly be determined via the algorithms of Tables 2.2 and 2.3.
Note however, the method does not cover those polynomials containing multiple roots together
with complex conjugate pairs.

2.3 Generalisation.

The Section above, together with Section 2.3.1 below, gives all the information for determining the
multiple roots of polynomials for orders 3 to 10. To generalise the method for polynomials of any
order, (3 to n) the following generalised algorithms apply.

2.3.1 The Differential Division Remainder Terms and Ratios.

The Differential Division Remainder Terms and Ratios for any polynomial of order n are given as
follows

c©P.G.Bass 10 M4 Version 1.0.0
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R(n−2) = 2
nB − (n− 1)

n2 A2

R(n−3) = 3
nC − (n− 2)

n2 AB

R(n−4) = 4
nC − (n− 3)

n2 AC

...

R1 = n− 1
n K1 − 2

n2 AK2

R0 = K0 − 1
n2 AK1

(2.11)

Where K2, K1 and K0 are the final three coefficient terms of the polynomial. The ratios of interest
are therefore

R(n−3)

R(n−2)
= P = 3nC − (n− 2) AB

2nB − (n− 1) A2

R(n−4)

R(n−2)
= Q = 4nD − (n− 3) AC

2nB − (n− 1) A2

(2.12)

2.3.2 The Primary Root.

In any polynomial of order n of the type in Table 2.1, if the number of primary roots is L, and the
number of secondary roots is S, then it can be shown that

R(n−3)

R(n−2)
= P = (L− 1) rp + (S − 1) rs

and

R(n−4)

R(n−2)
= Q = 0.5 (L− 2) (L− 1) r2

p + (L− 1) (S − 1) rprs + (S − 2) r2
s

(2.13)

From (2.13) the primary root is obtained by solving for rp thus

rp =
−

(
S2 − 4S + 5

)
P(

−LS2 + 4LS − 5L− 2S + 4
)

±

[ (
S2 − 4S + 5

)2
P 2(

−LS2 + 4LS − 5L− 2S + 4
)2 −

2 (S − 2) P 2 − 2 (S − 1)2 Q(
−LS2 + 4LS − 5L− 2S + 4

)
(L−1)

]1/2 (2.14)

and substitution for P and Q from (2.12) then gives the value of rp. As stated before, the positive
square root in (2.14) gives rp when rp > rs and vice versa for the negative square root. Eq. (2.14)
gives rp for any configuration of L and S, except the (n + 0) configuration as is clear from Table
2.2.
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2.3.3 Secondary and Tertiary Roots.

The secondary roots are given, as shown above, by

rs = (A− Lrp) /S (2.15)

For an (n-2) + 2 configuration, this gives the correct secondary root, but when the configuration
is (n-2) + 1 + 1, (2.16) does not verify by giving a zero remainder when divided into the original
equation. This confirms there are two single roots, which can then be determined thus

rs =
{A− (n− 2) rp}

2
±

{
A2 + (2n− 4) Arp − n (n− 2) r2

p − 4B
} 1/2

2
(2.16)

where the larger of the two single roots is given by the positive square root, and the smaller by the
negative square root.
Thus from (2.12), (2.14), (2.15) and (2.16) the multiple roots of any polynomial of any order, with
the configuration of Table 2.1, can be determined. Two simple examples of this process are shown
in Appendix A.

2.4 Implementation.

2.4.1 Manual Implementation.

If maximum precision is required, it is necessary to perform all calculations manually, i.e. without
the use of any mechanical or electronic aid. This is because all such devices can only display a
limited number of significant places, and if calculations in which very large numbers, or a large
number of decimal places are involved, this will cause minor errors in the results. Manual cal-
culations are not difficult with the equations involved as there are few required and they are all
relatively short and simple to perform. This is demonstrated in the examples in Appendix A.

2.4.2 Computer Implementation.

Computer implementation is subject to the same difficulty as mentioned above in the restriction of
the number of significant places used in the calculations. In this paper the computer implementation
adopted, is the Microsoft EXCEL spreadsheet program via an update of the BAIRSTOW.XLS
spreadsheet presented in [1]. EXCEL truncates all numbers to just 15 significant places, and this
adversely affects the calculations in two ways.

Firstly, in the determination of the possible roots via the algorithms presented in Table 2.2.
This can be partly alleviated by restricting all such calculations to four decimal places. The main
problem however, comes in the verification of the possible roots. The rounding errors introduced
by EXCEL’s 15 significant place restriction makes it extremely difficult to obtain a zero result
when dividing the possible roots into the original polynomial. This is because these rounding
errors are unpredictable. Over a very large range of numbers, they follow a cubic relationship
to the polynomial constant term. However, on top of this there is a short range pseudo-periodic
variation, which cannot be precisely mathematically represented. Therefore, to overcome this in
the EXCEL presentation here, verification of possible roots by dividing them into the original
equation is not used. Instead all the unused DDR remainder terms are utilised. These are all
polynomic functions of the primary root and together with an additional check on the polynomial
constant term, provide a good verification mechanism.

It is important to note that all the coefficients of the original polynomial must be covered in
the verification process of any root, and therefore as necessary all the DDR remainder terms are
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included in the EXCEL implementation root verification process. Consequently, for interest, a
complete list of all these terms for polynomials of orders 3 to 10 are shown in Appendix B.
Note that because of the anomaly concerning the (n-2) + 2 and (n-2) + 1 + 1 configurations,
(see Note 2 to Table 2.2), the latter configuration has been omitted from the EXCEL computer
implementation here. This configuration will be included in the method to be described in the
next paper for polynomials containing a mixture of multiple and single roots.
Albeit this verification process provides excellent results, it does not completely eliminate EXCEL’s
rounding errors. There are two types of errors encountered. Firstly, when the polynomial contains
multiple roots in the configurations of Table 2.1, and these roots are very close together, the
spreadsheet implementation can incorrectly determine them. The points at which errors start to
appear, for polynomials of order 10, are shown in the following Table together with the level of
errors experienced.
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Notes to Table 2.4.

1 These tests gave the correct root configuration and value with the primary and secondary roots
being as close as possible, (12 of 25).

2 These tests gave the correct root configuration but with small errors in the primary and sec-
ondary root values, (9 of 25).

3 These tests gave the incorrect root configuration plus a small error in the values of the pri-
mary and secondary roots, (3 of 25).

4 In this test the multiple root configuration was not recognised by the verification process, (and
analysis of the polynomial would thereby be passed to the BAIRSTOW Module in the spread-
sheet), (1 of 25).

To illustrate the vagaries of the Excel rounding error, with respect to Note 4 for test #23, the
root combination of 1.9876 x 5 plus 1.9843 x 5 was correctly recognised for configuration and val-
ues, as was the combination 1.9876 x 5 plus 1.9846 x 5, in contrast to the actual test result above
in which the secondary root lies in between the above two values.
The second type of errors occur when analysing polynomials containing singular roots, with or
without some multiple configuration. Again, when the roots are very close together, they can be
incorrectly recognised as one of the multiple configurations of Table 2.1. The point at which this
occurs, for polynomials of order 10 are shown in Table 2.5 below.

Primary Root Size Root Difference

rp >1000 0.1

1000 > rp > 100 0.01

100 > rp > 10 0.001

rp <10 0.0001

Table 2.5 - Closeness of Multiple/Singular Root

Combinations Generating Multiple Root

Configuration and Value Errors.

While the above error regime of this process has been fairly extensively described above, it is clear
that these errors are extremely small, and for most purposes, can be ignored. However, one caveat
that must be mentioned, is that all of the tests reported here are spot checks only. It is impossible
to test all possible multiple root configuration values as they are infinite in number. Consequently
the error regime tables above must be treated as guidelines only and when roots found are closer
than those in Tables 2.4 and 2.5, the error regime may change.

The error regime for orders 3 to 9 are similar or less than those shown above for order 10.
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A comparison of the accuracy of this process compared to the BAIRSTOW module, for a represen-
tative multiple root configuration, (roots adequately separated), is shown as part of the examples
of Appendix A.
The EXCEL spreadsheet in which this process has been incorporated, BAIRSTOW2.XLS can be
downloaded here.

www.relativitydomains.com/Mathematics/MultipleDDR/BAIRSTOW2.ZIP

This ZIP file also includes a slightly updated Polynomial Construction spreadsheet,
(POLYNOMIALCONSTRUCTION1.1.0.XLS).

3 Conclusions.

The Differential Division Remainder Method described here provides a very simple and quick way
to determine whether any polynomial of any order contains combinations of multiple root pairs,
and if so, their values.
Precise determination requires manual computation, but even with the rounding errors inherent in
EXCEL, the results achieved with the DDR module, are adequately accurate for most purposes.
Where the roots are very close, the maximum errors in their determination, for a large range of 10th

order polynomials, are less that 0.05%. However, as stated previously, this error regime is based
solely upon a series of spot checks and must therefore be treated as a guideline only. Consequently,
it is recommended that if this process provides roots that are closer than those shown in Table
2.4 and 2.5, they should be used to construct the applicable polynomial for comparison with
the original equation, and as necessary and desired, amended using the iteration process of the
Polynomial Construction Spreadsheet as described in [1]. This is particularly so if the coefficients
of the original polynomial are all integers, and the roots found are not.
The DDR Method is applicable to 39 multiple root configurations for polynomials of orders 3 to 10
as shown in Table 2.1. This however, leaves a further 87 configurations that the method does not
cover. These configurations contain a number of multiple roots plus a number of single roots. They
will form the subject of the next paper which will introduce a computer method, again utilising
EXCEL, to provide precise solutions.

APPENDIX A.

Examples of the Manual Application of the DDR Method.

Consider the equation

y = x11 + 68x10 + 2092x9 + 38424x8 + 468006x7 + 3967824x6 + 23885148x5

+534052104x4 + 127181473x3 + 596245132x2 + 615354464x + 368947264

(A.1)

The first four coefficients required to generate the first three remainder terms are A= 68, B=
2092, C= 38424 and D= 468006. Substitution of these coefficients into (2.12), together with the
polynomial order gives the DDR remainder ratios as
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R9
R10

= P = 57

R8
R10

= Q = 1437

(A.2)

Eq.(A.1) could contain multiple roots in the following configurations

(i)L = 10, S = 1

(ii)L = 9, S = 2 or 1 + 1

(iii)L = 8, S = 3

(iv)L = 7, S = 4

(v)L = 6, S = 5

(A.3)

It would be necessary to determine possible rp’s for all of these combinations and check by di-
viding them into (A.1) for a zero remainder. Pre-empting the result, the algorithm for rp for the
combination (A.3)(iii) is calculated from (2.14) as

rp =
P

9
+

{
144P 2

5103
− 4Q

63

}1/2

(A.4)

Substituting for P and Q from (A.2) then gives

rp = 7.0000 (A.5)

Dividing (rp + 7) into (A.1) gives a zero remainder confirming that this value contributes 8 roots.
The secondary root is then simply

rs = 1
3 (A− 8rp)

= 4.0000

(A.6)

Now consider the equation

y = x11 + 69x10 + 2150x9 + 39900x8 + 489510x7 + 4163334x6 + 25008816x5

+105884100x4 + 308828625x3 + 58883324x2 + 65718314x + 322828856

(A.7)

Here A = 69, B = 2150, C = 39900 and D = 489510, which gives
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R9
R10

= P = 59.5161

R8
R10

= Q = 1568.9032

(A.8)

The algorithm for (A.3)(ii) is

rp =
P

9
+

{
P 2

81
− Q

36

}1/2

(A.9)

Substitution of (A.8) into (A.9) then gives

rp = 7.0000 (A.10)

Which is confirmed as a root of (A.7). Accordingly if the configuration was 9rp + 2rs the secondary
root would be

rs = 1
2 (A− 9rp)

= 3.0000

(A.11)

But this does not give a zero remainder when divided into (A.7) which confirms that the configu-
ration must be 9rp + rs1 + rs2. From (2.16) the secondary roots are therefore calculated as

rs = 69− 9x7
2 ±

{
692 + 18x69x7− 11x9x72 − 4x2150

}
1/2

2

= 3.0000± 1.0000

= 4.0000 and 2.0000

(A.12)

These are confirmed as the secondary roots of (A.7) in the usual manner.
Finally, as an example of the accuracy of the DDR method compared to Bairstow for this category
of equation, consider the 7th order polynomial

y = (x + 37)4 (x + 23)3 (A.13)

Expanded this is

y = x7 + 217x6 + 20130x5 + 1016421x4 + 30690723x3

+ 550802091x2 + 5439473711x + 22802916887

(A.14)

Using the BAIRSTOW module, this is solved as
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r1 = 22.9993

r2 = 37.0138

r3 = 23.0004 + j0.0006

r4 = 23.0004− j0.0006

r5 to 7 = 36.9954

(A.15)

The time taken was 170.60 seconds, (400MHz Computer).

Using DDR the solution was exactly as (A.13) and the time taken was 1.10 seconds

Appendix B.

This Appendix presents a complete listing of all the DDR remainder terms for polynomials of
orders 3 to 10. These are used in the root verification process in the DDR module for multiple
root determination of polynomials with root configurations as in Table 2.1. It is clear from these
terms that they exhibit a pattern closely related to Pascal’s Triangle.
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