
c©P.G.Bass January 2010

ENSURING THE ABSOLUTE STABILITY

OF THE BAIRSTOW POLYNOMIAL ROOT

EXTRACTION METHOD.

Peter G.Bass.

ABSTRACT.

Bairstow’s Method of finding the roots of polynomial equations is examined in detail to determine
the ways in which it fails to produce a satisfactory result. These problems are then eliminated
in an experimental computer spreadsheet implementation, (Microsoft EXCEL), for polynomials of
orders up to 10.

1 INTRODUCTION.

There are many methods of determining the roots of linear and non-linear equations of a single
variable as delineated in [1]. Perhaps the most widely known is the Newton-Raphson Method,
within a population that ranges from the very simple Bi-Section Method, up to the sophisticated
Jenkins-Traub Method, which can deal directly with equations with complex coefficients.

All of these methods use a process of iteration starting from one or more ”initial guesses”, to
home in on one or two roots simultaneously, and then reducing the original equation accordingly
to repeat the process until all the roots have been found. They all enjoy varying degrees of success,
depending upon their sophistication and complexity. However, they are also subject to a number
of failure mechanisms, and restrictions in application, and there does not appear to be one single
process that will reliably deal with all types of equations.

The method to be studied here is known as Bairstow’s Method for polynomials, and was devel-
oped by Sir Leonard Bairstow and first published in an Appendix in his book, ”Applied Aerody-
namics” in 1920. This method is particularly appealing because its convergence is quadratic, and
its mathematical technique can easily be implemented in a computer spreadsheet, so eliminating
a considerable amount of computer code development. However, Bairstow’s Method also suffers
from a number of restrictions and failure mechanisms, which have resulted in it being of limited
use.

It is the purpose of this paper to analyse these problems and eliminate them in two experimen-
tal spreadsheets that can be downloaded from the website as a ZIP file. Of the two spreadsheets
provided, the first, ”Bairstow.xls”, is the main one which will determine the roots of any poly-
nomial with real coefficients up to order 10, from the input of its coefficients. It is similar to,
but more extensive than, the spreadsheet application of Bairstow’s Method presented in [2]. The
second spreadsheet, ”Polynomial Construction.xls”, serves three purposes, (i) construction of any
polynomial up to order 10 from the input of its roots, both real and complex, (ii) iteration of
the roots of a polynomial to make minor adjustments to its generated coefficients, and (iii) the
multiplication together of two polynomials each of order up to 5, again with both real and complex
coefficients. The in depth details and usage of both of these spreadsheets is described more fully
in the later text.

c©P.G.Bass 1 M3 Ver. 1.0.0
January 2010

c©P.G.Bass January 2010

2 Bairstow’s Method of Finding the Roots of Polynomial Equations.

2.1 A Brief Description of Methodology.

In Bairstow’s Method, the equation to be solved is divided by a quadratic, the coefficients, r and
s, of which, are initially specified as the ”input guesses”. This results in a reduced polynomial
and a remainder. Based upon the coefficients of the original polynomial, and those of the dividing
quadratic, the parameters r and s are then adjusted to new values using a Taylor’s series expansion,
with the objective of reducing the remainder to zero. This process is continuously repeated until
the division remainder approaches zero to within a specified limit. The resulting roots of the
dividing quadratic are then taken as the same as two of those of the original polynomial. The
latter is then reduced by the roots found, and the whole process repeated until all the roots have
been determined.
A more detailed description may be found in [1].

2.2 Failure Mechanisms and Restrictions.

As it stands there are basically four problems with this method, as follows.

(i) If the ”initial guesses” of the coefficients of the dividing quadratic are unsuitable,
the method can diverge. The reason for this is analysed in Appendix A.

(ii) If the required output precision is too tight, the method can hunt and fail to
converge to a solution. The reason for this is also analysed in Appendix A.

(iii) The method is only applicable to polynomials with real coefficients. It can however,
deal with these to any exponent order.

(iv) When the polynomial to be factored contains multiple identical or very close roots,
the method can produce results that are outside the required precision.

These problems limit the applicability of the method, especially when high order polynomials need
to be factored. However, because the method is most conducive to computer implementation in
a spreadsheet, these problems can be eliminated. The first three problems are easily eliminated.
The fourth is more difficult.

2.3 Problem Elimination.

The solutions to the problems described here, are as incorporated in the computer spreadsheet
implementations associated with this paper.

2.3.1 Divergence.

The problem of divergence is eliminated by monitoring the remainder after each fourth division
of the iterated quadratic, to see whether it is increasing or decreasing. If it is increasing, and
continues to do so to exceed a predetermined limit, the original value of s is adjusted by unity, and
the whole process restarted. This is repeated until the remainder stops diverging, and converges
towards zero. The limit set in the Bairstow spreadsheet is 1E ± 100. See Appendix A.

c©P.G.Bass 2 M3 Ver. 1.0.0
January 2010

c©P.G.Bass January 2010

2.3.2 Hunting.

To eliminate the problem of hunting, first note that precision is initially specified by how close
the remainder should approach zero before the root is taken. The value specified in the Bairstow
spreadsheet is 1E - 10. To avoid hunting, if the roots have not been found before 100 iteration
cycles, this limit is continuously reduced by a multiplicative factor of 1.01, until it reaches the level
of precision to which the method has achieved. The roots are then taken, the limit reset to the
above value, and the process restarted to find the next pair of roots. See Appendix A.

2.3.3 Complex Coefficients.

The fact that the Bairstow Method is only applicable to polynomials with real coefficients is
a serious limitation. The method itself cannot be modified to accommodate polynomials with
such characteristics, but these types of equations can themselves be reformatted to make them
applicable.
Consider the following generalised equation,

y =
n∑

i=0

Aix
i (2.1)

where

Ai = ai + jbi (2.2)

To find the roots of (2.1) using Bairstow’s Method, first multiply (2.1) by its complex conjugate
equation, i.e.

yc =
n∑

k=0

Bkxk (2.3)

where

Bk = ak − jbk (2.4)

This results in,

yyc =
n∑

i=0,k=0

A(n−i)B(n−k)x
(2n−i−k) (2.5)

and where all the coefficients are real. Equate (2.5) to zero and normalise the coefficient of the
highest exponent to unity. Eq.(2.1) has thereby been converted to a polynomial of twice the order,
but with real coefficients. The roots of (2.5) will be the complex conjugate pairs of (2.1) and (2.3),
and any real roots in (2.1) and (2.3) will therefore be duplicated in the roots of (2.5).
To identify which roots of (2.5) belong to (2.1), first the number of all real roots will obviously
be one half of all duplicated real roots. The complex roots can then be identified by applying
Descartes’ Rule of Signs to the imaginary coefficients of (2.1). This latter process may require a
trial reconstruction of (2.1) from selected pairs of roots of (2.5), if the roots of (2.1) contain both
positive and negative imaginary components.
Simple examples of the above procedure are given in Appendix B.
Note that the process of multiplying high order polynomials with complex conjugate coefficients,
has been facilitated on the second sheet of the Polynomial Construction spreadsheet associated
with this paper.

c©P.G.Bass 3 M3 Ver. 1.0.0
January 2010

c©P.G.Bass January 2010

2.3.4 Multiple Roots.

When all the roots are real and identical, they can easily be determined from the appropriate
comparison of a(n−1), the coefficient of x(n−1), and a0, the constant term in the polynomial. Apart
from this one case, this is the most difficult problem associated with any root extraction algorithm.
Multiple roots not being correctly identified, and appearing as slightly separated singular roots.
Sometimes small conjugate imaginary components also appear, when only real roots are expected.
This can also occur when two roots are not quite identical, but very close. The worst case occurs
when there (n - 1) identical roots, and one singular root, especially when the multiples and the
singular are widely separated. To avoid this specific case, a new algorithm, independent of the
Bairstow Method, has been developed that will identify all such roots with 100% accuracy and
precision. The algorithm is based upon a specific relationship, that in this case, exists between the
original polynomial and its first derivative.

In all remaining cases, extraction of all multiple root combinations are subject to the Bairstow
Method as modified herein. Accordingly, if the number of identical roots is small, typically less
than half the total number of roots, they are generally identified correctly. It is believed that this is
because the method, being quadratically convergent, each half of an identical pair of roots is located
in conjunction with one of the singular roots. If however, the number of identical roots exceeds
one half of the total number of roots, this does not apply, especially when one of the multiple
roots is the first to be taken. The problem appears to be due to the fact that with identical
roots, when the polynomial is graphed, the curve does not cross the x axis, but just touches it
at one singular point, plus the nature of iterative analysis being a non-continuous process, the
method is unable to converge to the exact root. The difficulty is partly alleviated in the Bairstow
spreadsheet application associated with this paper, by subjecting every reduced equation to a new
part multiplicity root check algorithm before continuing with the Bairstow analysis. This produces
a good result when all the singular roots have been identified, and only multiple roots are left in the
reduced equation. Where this is not the case, the remainder of the division process oscillates close
to zero at the location of the remaining multiple roots by an amount determined by the iteration
amplitude. In the application here, this continues until the hunting avoidance mechanism reduces
the required precision to that attained by the iteration process and the ”roots” are then taken.
Errors with multiple complex roots are not so great because of the variation resulting from the
opposing imaginary components.

The Bairstow Method cannot be modified to eliminate this difficulty, and so, another method
of elimination must be used. The method selected here, which applies to multiple complex roots
as well as real, is as follows.
First, a simple algorithm has been included in the Bairstow spreadsheet to indicate when multiple
root errors may be present in the results, and the multiple roots thereby detected as very close
singular roots, straddling them with errors of up to ±3%. Thus when this is the case, all the
roots found can be copied to the Polynomial Construction spreadsheet, and inserted into the input
cells in ascending order. The resulting polynomial coefficients can then be directly compared with
those of the original equation, for which appropriate input cells have been provided. If there are
discrepancies, the individual roots can then be iterated by any amount, up or down, until the
resulting polynomial coefficients exactly match those of the original equation. The final roots are
then precise.

When the multiple roots involved are integer, or posses just a small number of decimal places,
this process is relatively easy and a satisfactory result achieved quite quickly. If the multiple roots
are complex, and/or involving very high precision, the iteration process will be more difficult and
require some patience and good interpretative skills.

c©P.G.Bass 4 M3 Ver. 1.0.0
January 2010

c©P.G.Bass January 2010

2.4 Computer Spreadsheet Implementations.

2.4.1 The Bairstow Spreadsheet.

The Bairstow spreadsheet comprises four separate sheets. The first contains basic instructions, an
area for the input of polynomial coefficients, and an area for the display of the roots found, with
real and imaginary components presented in the form ai ± j bi.
The input of initial guesses of r and s are not necessary because, via testing, optimum values have
been found for a very wide range of polynomial characteristics, and are selected according to the
coefficient inputs. However, a facility for the manual input of r and s has been provided should it
be so required.
Also included in this sheet, is the possible multiple root error warning message, shown just below
the root output display.
The second sheet in this spreadsheet is the Bairstow process calculation sheet which does not require
user intervention. It is displayed during operation, where it shows not only the root determination
process in operation, but also the part multiplicity root check algorithm, and the divergence,
hunting and reduced equation corruption avoidance mechanisms, (for this last, see Section 2.4.4).
Note that sometimes during operation, this sheet appears to ”freeze”, with only the cycle counter
and the accuracy limit counter operating. This is normal and means that the iteration amplitude
has reduced to zero, and the accuracy limit is being counted down to meet that attained by the
iteration process, i.e. the hunting avoidance mechanism.
The third sheet contains the new algorithm for the extraction of the (n- 1) multiples plus one
singular root.
Finally, the fourth sheet contains further information and instructions, the latter primarily the
procedure to be adopted when possible multiple root errors have been indicated in the results. A
disclaimer on the use of this spreadsheet is also included here.

2.4.2 The Polynomial Construction Spreadsheet.

This spreadsheet comprises three separate sheets. The first will generate any polynomial up to
order 10 from the input of its real/complex roots. This sheet is provided primarily for twofold use.
First, in removing multiple root errors in those roots found via the Bairstow spreadsheet. To that
end a facility has been included to enable the detailed and precise iteration, positive or negative,
of any root component. This process allows the reformulation of the coefficients of the original
equation, so removing multiple root errors and thereby obtaining a set of very precise roots.
The second purpose of this sheet is to determine, again from a reconstruction of the original
polynomial, the correct roots of an equation with complex coefficients when it contains roots with
both positive and negative imaginary components
The second sheet deals with the multiplication of any two polynomials of order 1 to 5, with
either real or complex coefficients. It is primarily provided to enable multiplication of complex
conjugate polynomials, so that equations with complex coefficients can be analysed in the Bairstow
spreadsheet for their roots.
The third sheet once again contains further information, instructions and a disclaimer.
Both of the above spreadsheets can be downloaded here as a ZIP file, Bairstow.zip. Microsoft
EXCEL 97 or later is needed to run them.

2.4.3 Testing.

The testing discussed here concerns only the Bairstow spreadsheet. It is emphasised that it is of
course not possible to test all configurations of polynomials, there being for even just quadratics,

c©P.G.Bass 5 M3 Ver. 1.0.0
January 2010

c©P.G.Bass January 2010

an infinite number etc. The results quoted below can therefore only be considered as typical, and
variations may be experienced either up or down depending upon any polynomial analysed.
When just singular roots are involved, they were all correctly identified to an accuracy of at least
0.001%, albeit only to the displayed four decimal places. The cases tested were a combination of
very small, very large and a mixture of same, covering both real and complex conjugate roots.
The major part of the test programme was concerned with polynomials that contained a multiplic-
ity of identical roots. In the group of polynomials of orders 3 to 10 inclusive, there are 127 possible
combinations of multiple roots. All of these were tested with both integer and four decimal place
roots with results as shown in the following table.

Order No. of Combinations Max. % Error Multiple Root Combination
of Multiple Roots (Magnitude) with Max. Error

3 2 0 No Errors
4 4 0 No Errors
5 6 0.010 3+1+1
6 10 0.094 4+1+1
7 14 0.085 5+1+1
8 21 2.17 6+2
9 29 2.04 5+4
10 40 3.29 8+1+1

Total 127 - -

Table 2.1 - Test Results for Multiple Roots.

Note: The nomenclature 3+1+1 means a triple root plus two singles etc.
All of the above discrepancies were able to be eliminated via the Polynomial Construction facility.
Note that where there were n multiple roots, no errors were encountered, and with respect to the
new algorithm for (n - 1) multiple roots plus a single, again no errors resulted.

2.4.4 Limitations.

Apart from the obvious limitations deliberately included of displayed output to a maximum of
4 decimal places, and the maximum order of polynomial being 10, (5 for those with complex
coefficients), there are two other limitations of the application presented here.
When the roots are greatly separated, the method can give fictitious results. This is because if a
very large root is taken in conjunction with a very small one, the accuracy with which the small
root is taken is governed by that applicable to the large. This can cause the small root to be very
inaccurate, which in turn can corrupt the reduced equation so resulting in the rest of the roots
also being grossly wrong. To avoid this wherever possible, a method of detecting corruption of the
reduced equation has been incorporated. When this is triggered, the process is halted, the values of
r and s varied, and the process re-initialised and re-started. In extreme cases this form of corruption
can persist after adjustment of r and s. In such cases the avoidance procedure will trigger for a
maximum of 10 times with increasingly large values of r and s adjustment. Subsequently, the root
finding process is allowed to continue. In these cases the results should be carefully checked via
the Polynomial Construction spreadsheet facility to ensure that the roots found are good. With

c©P.G.Bass 6 M3 Ver. 1.0.0
January 2010

c©P.G.Bass January 2010

regard to this feature, it is also very important to note that, there are a number of polynomials
which inherently exhibit the criteria used here to test for corruption of a reduced equation. i.e.
equations containing complex roots or real roots with mixed parity. These equations will, after the
above 10 times test, be factored correctly. The penalty incurred by way of delay in these equations
being analysed, is merely a matter of a few seconds.
The second limitation concerns the computational hardware. All computers are subject to very
small rounding errors, and when computing with very large numbers, these can become significant.
This limits the size of a0 in this application to between 1E-9 and 1E+40. Outside of this range,
accuracy may in some cases be in excess of that quoted in Table 2.1. A warning message is shown
accordingly.

3 Conclusions.

The enhancements of the basic Bairstow Method of polynomial root extraction introduced here has,
it is believed, improved both its functionality and its applicability. In its spreadsheet application,
elimination of the divergence and hunting problems have ensured that it will always converge to
a solution. Accuracy has in some cases been improved by the introduction of the algorithms to
identify both n, and (n - 1) identical roots, and the part multiplicity root algorithm. However, this
still leaves the inaccuracies for all other configurations of multiple roots, albeit they can be corrected
via the Polynomial Construction spreadsheet facility. This however, in the case of complex roots,
and/or high precision, can be a difficult and time consuming task, and ideally, if these roots could
be detected accurately, could be dispensed with.
Further improvement can be achieved in essentially three ways, as follows,

(i) Improving accuracy for all other configurations of multiple roots. Clearly this is the most
important improvement target, and further algorithms for this purpose are being developed.

(ii) Extending the order of polynomials that can be handled. This is merely an extension of
spreadsheet and macro coding. However, as the order is increased, the amount of extra coding in
the Polynomial Construction spreadsheet becomes, for one individual, prohibitively high.

(iii) Extending the precision of the roots found. This can initially be achieved by simply in-
creasing the number of decimal points displayed in the output. However, if very high precision
were required, it would need modification of Bairstow’s original concept to include the second order
terms in the Taylor series expansion of r and s. This has been suggested elsewhere.

Appendix A.

The Cause of Divergence and Hunting.

A.1 Divergence.
In the development of the Bairstow Method, the iterated values of the remainder coefficients are
given by a Taylor series expansion, thus

b1 (r + ∆r, s + ∆s) = b1 (r, s) + ∆r
∂b1 (r, s)

∂r
+ ∆s

∂b1 (r, s)
∂s + · · ·

b0 (r + ∆r, s + ∆s) = b0 (r, s) + ∆r
∂b0 (r, s)

∂r
+ ∆s

∂b0 (r, s)
∂s

+ · · ·

(A.1)

c©P.G.Bass 7 M3 Ver. 1.0.0
January 2010

c©P.G.Bass January 2010

where b1() and b0() are the coefficient of x and the constant term in the division remainder.
This leads to

b1 (r + ∆r, s + ∆s) = b1 (r, s) + c2∆r + c3∆s + ε1

b0 (r + ∆r, s + ∆s) = b0 (r, s) + c1∆r + c2∆s + ε2

(A.2)

where c1, c2 and c3 are functions of r and s and the coefficients of the original equation, and
ε1 and εygre second and higher order terms in the Taylor series expansion. If the method is to
converge, the term on the LHS must tend to zero. The values of ∆r and ∆s are obtained by
ignoring the ε terms and assuming the LHS of (A.2) is indeed zero. This then leads to,

∆s = c1b1 (r, s)− c2b0 (r, s)
c2
2 − c1c3

∆r = c2b0 (r, s)− c3b1 (r, s)
c2
2 − c1c3

(A.3)

Substituting these terms back into (A.2) then gives

b1 (r + ∆r, s + ∆s) = ε1

b0 (r + ∆r, s + ∆s) = ε2

(A.4)

So that, possible divergence is apparently due to the second and higher order terms in the Taylor
series expansion becoming dominant. These terms are higher order functions of r and s, and the
coefficients of the original equation, which are fixed.
Let the ε terms here be given by just the second order terms in the Taylor series expansion, then

ε1 = (∆r)2

2!
∂2b1 (r, s)

∂r2 + (∆s)2

2!
∂2b1 (r, s)

∂s2

ε2 = (∆r)2

2!
∂2b0 (r, s)

∂r2 + (∆s)2

2!
∂2b0 (r, s)

∂s2

(A.5)

For a quartic polynomial, in which the coefficient of the highest exponent has been normalised to
unity

∂b1 (r, s)
∂s

= a3 + 2r = c3

∂b1 (r, s)
∂r

= ∂b0(r,s)
∂s = a2 + 2s + 2ra3 + 3r2 = c2

∂b0 (r, s)
∂r

= a1 + 2sa3 + 6rs + 2ra2 + 3r2a3 + 4r3 = c1

(A.6)

So that

c©P.G.Bass 8 M3 Ver. 1.0.0
January 2010

c©P.G.Bass January 2010

∂2b1 (r, s)
∂s2 = ∂c3

∂s
= 0

∂2b1 (r, s)
∂r2 = ∂c2

∂r
= 2a3 + 6r

∂2b0 (r, s)
∂s2 = ∂c2

∂s
= 2

∂2b0 (r, s)
∂r2 = ∂c1

∂r
= 6s + 2a2 + 6ra3 + 12r2

(A.7)

where in (A.6) and (A.7) the ”a” parameters are the coefficients of the original equation.
Substitution of (A.7) into (A.5) then gives

ε1 = (∆r)2

2! (2a3 + 6r)

ε2 = (∆r)2

2!
(
6s + 2a2 + 6ra3 + 12r2

)
+ (∆s)2

(A.8)

In (A.8), the coefficients of (∆r)2 and (∆s)2 are finite and from their form cannot be the source
of divergence. Thus if divergence occurs it must be because ∆r and ∆s themselves diverge.
From (A.3) these terms will only diverge if

c2
2 − c1c3 → 0 (A.9)

Substitution of (A.6) into (A.9) yields

c2
2 − c1c3 = r4 + 8a3r

3 +
(
6s + 5a2 + 5a2

3

)
r2

+
(
4a3s + 2a2a3 − 2a2

3s− 6a2s− a1a3

)
r

+4a2s + a2
2 − 2a2

3s− a1a3

(A.10)

and thus divergence can occur via the iteration process when r approaches any of the roots of
(A.10). These roots clearly depend upon the value of s, and in the divergence avoider in this
application therefore, it is sufficient, when necessary, to vary only s by a small amount to move r

away from these roots, and ensure that the method converges.
Also note that with ∆r and ∆s as the ultimate source of divergence, the primary terms in (A.2)
are also subject to this phenomenon and consequently, under these conditions, (A.4) is not a valid
relationship.
For other higher order polynomials, the equivalent equation to (A.10) will be of the same order as
the polynomial, giving more possibilities for divergence, but the same criteria applies with regard
to avoidance.

A.2 Hunting.
In the absence of divergence, (A.4) is valid and, from this, ε1 and ε2 are clearly the minimum
values to which b1() and b0() can reduce. The higher the order of the equation to be analysed, the
larger these terms will be, and therefore the greater the potential error in the results, especially
with multiple roots. Consequently, if these error terms are above the required precision, then the

c©P.G.Bass 9 M3 Ver. 1.0.0
January 2010

c©P.G.Bass January 2010

method can never converge to a solution. The only recourse is therefore, to reduce the required
precision until it reaches the higher of the two error terms above. This is the purpose of the hunting
avoider.

Appendix B.

Solution of Polynomials with Complex Coefficients - Examples.

B.1 Same Sign Roots, (Imaginary Component).
Consider the equation,

y = (x + 2) {x + (1 + j2)} {x + (3 + j4)} (B.1)

This multiplies out to,

y = x3 + (6 + j6) x2 + (3 + j2) x + (−10 + j20) (B.2)

To determine the roots of (B.2) using Bairstow, first multiply (B.2) by its complex conjugate
equation

yc = x3 + (6− j6) x2 + (3− j2) x + (−10− j20) (B.3)

To give

yyc = x6 + 12x5 + 78x4 + 280x3 + 621x2 + 820x + 500 (B.4)

Equating (B.4) to zero and inserting its coefficients into the Bairstow spreadsheet yields the roots
as,

yyc = (x + 2)2 {x + (1 + j2)} {x + (1− j2)} {x + (3 + j4)} {x + (3− j4)} (B.5)

Consequently, within (B.5), the roots of (B.2), from an application Descartes’ Rule of Signs to the
imaginary components of (B.2), are determined to be those of (B.1).

B.2 Opposite Sign Roots, (Imaginary Components).
If (B.1) were

y = (x + 2) {x + (1 + j2)} {x + (3− j4)} (B.6)

To give

y = x3 + (6− j2) x2 + (19− j2) x + (22 + j4) (B.7)

Multiplying (B.7) by its complex conjugate again gives (B.4) and subsequently (B.5). Descartes’
Rule of Signs applied to (B.7) then shows complex roots with both positive and negative imaginary
components. The correct ones are then identified by inserting the two complex root combination
possibilities, i.e. (1+j2) with (3-j4) or (1-j2) with (3+j4), together with the single real root, into
the Polynomial Construction spreadsheet to determine which gives the correct coefficients of (B.7).

c©P.G.Bass 10 M3 Ver. 1.0.0
January 2010

c©P.G.Bass January 2010

References.

[1] Root Finding Algorithms, www.wikipedia.com.

[2] Karim Y Kalaban, Ali El-Hajj, Shahwan Khoury and Fadi Yousuf, Root Computations of
Real-Coefficient Polynomials Using Spreadsheets, Inst. J. Engng Ed. Vol. 18 No. 1 pp 89-97,
2002.

c©P.G.Bass 11 M3 Ver. 1.0.0
January 2010

