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GRAVITATION -

A NEW THEORY

Peter G. Bass

Abstract

This paper presents a new relativistic theory of gravitation as an alternative to
that represented in Albert Einstein’s General Theory of Relativity. Initially, a new
representation of the gravitational space-time continuum, designated the Relativistic
Domain D1, is created utilising a system of linear co-ordinates. This Domain is
subsequently shown to possess all the gravitational characteristics of the General
Theory, and as observed in the Solar System and beyond. A new interpretation of
the gravitational phenomenon is thus made, avoiding the problems associated with an
induced curvature of the space-time continuum as is required in the General Theory.

1 Introduction.

The General Theory of Relativity, published by Albert Einstein in 1915/16, deals with
the kinematics of motion of a free particle mass when under the exclusive influence
of gravitation. Within the General Theory gravitation is not purported to be caused
by an accelerative force, it is said to be caused by the presence of matter creating a
distortion of the space-time continuum. The distortion is such that the continuum
becomes curved in the direction of the gravitational source. A mass within this curved
space-time, in motion under the sole influence of the source, then moves along a curved
path, or geodesic, so gravitating towards it. The velocity of such motion increases
with the increase in the degree of curvature as the source is approached. What is not
clear in the General Theory however, is how a particle mass is caused to accelerate
from rest, from any location within this curved space-time. Also, the mechanism
causing the curvature is neither adequately defined nor mathematically described.

This paper provides an alternative approach to gravitation avoiding these difficul-
ties by removing the need for a curved space-time continuum. In a manner identical to
the analytical approach advanced in [1], the concept of an Existence Velocity within
a Relativistic Domain is used to simplify, extend, and eventually re-define the gravi-
tational phenomenon.
Initially, the precise definition of a linear Relativistic Space-Time Domain, D1, within
which gravitation is subsequently shown to exist naturally, is effected. This permits
the derivation of a simple expression for the cause of gravitational motion, defined
as the Acceleration Potential of that Domain. This Potential, subsequent to the cor-
relation of the Domain D1 with the Solar System, then enables an uncomplicated
derivation of the major kinematic equations of gravitational motion, including those
for a central orbit for a single particle mass. Utilising these results, an exact solution
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of the equation of the orbit is then constructed for comparison with the approxi-
mate solutions of the General Theory, and with gravitational motion within the Solar
System.
Where useful throughout the text, a physical interpretation of the results is given, as
is frequent comparison with the applicable expressions of the General Theory.
In the interests of brevity, mathematical derivation has been kept as short as possible
and only the main results presented. Also, familiarity with the general concept of a
Relativistic Space-Time Domain and its main characteristic, Existence Velocity, as
presented in [1], is assumed.

2 The Relativistic Space-Time Domain D1.

2.1 Definition.

The Relativistic Domain D0, as developed and shown in [1] to be equivalent to Pseudo-
Euclidean Space-Time, is one in which gravitation exists in an artificially defined form
only. A rigorously defined expression of gravitation, for a single gravitational source,
requires that the Domain D0 is modified by the presence of the source, to produce
a new Relativistic Domain, D1. The change is a simple one and the only differences
between D0 and D1 are, firstly, a modification of the form of Existence Velocity,
the central concept upon which such Domains are based, and secondly a consequen-
tial modification of the maximum theoretical spatial velocity attainable within the
Domain. The new Domain is however still linear and does not exhibit any form of
curvature.

Accordingly, D1 can be defined as a mutually orthogonal space-time of four linear
dimensions, three of which Y1, Y2, and Y3, are spatial in nature, and the fourth, X0,
is temporal and identical to the temporal dimension of D0. Time in D1 is represented
by the parameter τ and, as a consequence of the new Domain’s modified Existence
Velocity, is different from the time t in D0. The Domain is such that it possesses a
preferred spatial origin, the centre of the gravitational source, from which the radius
vector magnitude to any random point B is

σ =
(
y2
1 + y2

2 + y2
3

)1/2
(2.1)

where y1 , y2 and y3 are each a distance along the respective spatial axes from the
origin. σ has been chosen to represent the radius vector magnitude in D1 to separately
identify it from the same parameter, r, in D0.
All spatial-temporal points that exist within D1 must, at all times, possess a charac-
teristic Existence Velocity, the magnitude of which, for the point B, is defined to be
the resultant of all four velocities along the co-ordinate axes of D1 and, may therefore
be expressed as

V =
(
ẏ2
1 + ẏ2

2 + ẏ2
3 + ẋ2

p

)1/2
= cu (2.2)

where the ẏ#are the spatial axial velocities of the point and ẋp is its temporal velocity.
The parameter c is a velocity constant numerically equal to the magnitude of Existence
Velocity in D0 and u is initially defined to be an arbitrary dimensionless function of
σ.

Finally, the maximum theoretically attainable spatial velocity in D1, designated
Spatial Terminal Velocity, is defined as follows. For motion purely along a radius
vector, Spatial Terminal Velocity is defined to be equal to cu. For purely circular
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motion in any plane about the origin, it is defined to be equal to the velocity constant
c. This difference exists because of the purely radial nature of gravitation.

2.2 Existence Within D1

The Spatial-Temporal Existence Velocity Vector V, for the random point B within
the Domain is determined as follows.
The spatial-temporal position of the point B with respect to the spatial centre of the
gravitational source and some chosen temporal reference will be

S = iy1 + ly2 + ky3 + jxp (2.3)

where the y# are each a distance along the three spatial axes Y1, Y2 and Y3 for
which the i , l and k are normal unit vectors. The term xp is a distance along the
temporal axis for which j is the unit vector with a magnitude of

√
−1.

From (2.1), Eq.(2.3) may be rewritten as

S = σn + jxp (2.4)

where n is a radial unit vector.
For planar motion, the velocity of this point is defined by differentiating (2.4) with
respect to the time τ thus

V = σ̇n + uωσt + j ẋp (2.5)

where V = dS/dτ and ω = dφ
dτ

and is the angular rate of the point B.
Note that (2.5) involves the differential of the unit vector n thus

dn

dτ
=

dn

dϕ

dϕ

dτ
= uωt (2.6)

within which
dn

dϕ
= ut (2.7)

and therefore similarly
dt

dϕ
= −un (2.8)

Relationships (2.7) and (2.8) occur because of the different Spatial Terminal Velocities
in the radial, n , and radial normal, t , directions. Proof of the above relationships is
presented in Appendix F.
Taking the magnitude of (2.5) gives, after invoking the characteristic of existence in
D1 via the insertion of (2.2)

|V| = V = cu =
(
σ̇2 + u2ω2σ2 + ẋ2

p

)1/2
(2.9)

from which

ẋp = cu

(
1− σ̇2

c2u2
− ω2σ2

c2

)1/2

(2.10)

which when re-inserted into (2.5) yields

V = σ̇n + uωσt + j cu

(
1− σ̇2

c2u2
− ω2σ2

c2

)1/2

(2.11)

Eq.(2.11) is the Existence Velocity of the random point B in the Relativistic Space-
Time Domain D1. This expression will be used in the next Section to develop the
kinematics and kinetics of gravitational motion in D1 which will then be shown to
be the natural state of existence in that Domain. Before that however, it is useful to
note three other important characteristics of D1.
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2.3 The Time τ in D1

The first concerns the time τ in D1. From (2.11) when σ̇ and ω are both zero, motion
exists only along the temporal axis of D1 so that the temporal velocity of a spatially
stationary point in D1 is

dx0

dτ
= cu (2.12)

and therefore an element of time in D1may be defined by the relationship

dτ =
dx0

cu
(2.13)

and is therefore a function of spatial position from the origin by virtue of the fact
that u is a function of σ.

2.4 The Proper Time in D1

The second point concerns the proper time of the point B in D1, i.e. the time measured
by an observer located with the point B. Inserting (2.12) into (2.10) and re-arranging
gives

dxp

dx0
=
(

1− σ̇2

c2u2
− ω2σ2

c2

)1/2

(2.14)

using (2.13) to rewrite the LHS of (2.14) then gives

dτp

dτ
=
(

1− σ̇2

c2u2
− ω2σ2

c2

)1/2

(2.15)

where
dτp =

dxp

cu
(2.16)

where dτp/dτ is the temporal rate, and τp the proper time of the point B in D1.

2.5 Temporal Significance of the Function u.

Although u has been defined as a non-dimensional function of the spatial variable σ,
its appearance in the temporal components of the above relationships has a special
significance in that it relates time in D1 to that in D0, (Pseudo-Euclidean Space-
Time).
A spatially stationary point inD1, with a temporal velocity given by (2.12) would, in
an element of time dt in D0 move an element of distance dx 0 along the temporal axis,
given by

dx0 = cudt (2.17)

Therefore in D0,the proper time of such a point, i.e. the proper time of D1 would be

dτ =
dx0

c
= udt (2.18)

so that
dτ

dt
= u (2.19)

and u is therefore a measure of the temporal rate of D1with respect to D0 and,
for future reference, it is noted that it must therefore possess a positive sign. Also,
it is clear that because u is a function of σ, the temporal rate of D1 is a variable
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dependent upon radial distance from the centre of the gravitational source, i.e. D1

exhibits spatially dependent temporal dilatation, as is also evident from (2.13).
The relationship between the respective spatial axes of the two domains depends upon
the characteristics of u and will be developed subsequent to the determination of the
precise nature of this function in Section 4.

3 Gravitational Planar Motion in D1.

3.1 The Accelerative Force of Gravitation.

It was shown in [1] that in the Relativistic Domain D0, (Pseudo Euclidean Space-
Time), a change in the Existence Momentum of a mass could only be effected by the
application of an accelerative force. Indeed, for spatial motion of a mass to exist in
any Relativistic Domain, including one exhibiting gravitation, it is firmly believed
that it can only result from the application of such a force. To cause gravitational
motion therefore, if an accelerative force is not artificially applied, then it must be
generated within the mass itself as a result of interaction with the characteristics of the
Domain. Assuming the gravitational effect in D1 to be a purely spatial radial one, this
internally generated gravitational force can be determined for any gravitating mass,
by comparing the spatial variation of its total energy, with the temporal variation of
its Existence Momentum. First, consider the variation of Existence Momentum with
time. For planar motion it is derived as follows.

If m is the energy mass of a particle possessing free planar motion in D1, then,
from (2.11), its Existence Momentum will be:-

M = m
{

σ̇ n + uωσ t + j
(
c2u2 − σ̇2 − u2ω2σ2

)1/2
}

(3.1)

Differentiating (3.1) with respect to τ gives the time rate of change of M in D1 as :-

dM
dτ

=
{
ṁ σ̇ + m

(
σ̈ − u2ω2σ

)}
n

+
{

ṁ uωσ + m
(
2uωσ̇ + ωσσ̇ du

dσ
+ uω̇σ

)}
t

+j
{

ṁ
(
c2u2 − σ̇2 − u2ω2σ2

)1/2

+m

(
c2uσ̇ du

dσ
− σ̇σ̈ − uω2σ2σ̇ du

dσ
− u2ωω̇σ2 − u2ω2σσ̇(

c2u2 − σ̇2 − u2ω2σ2
)1/2

)}
(3.2)

where in taking the derivatives of the unit vectors n and t , the relationships of (2.7)
and (2.8) have been inserted.
Equation (3.2) gives the reaction of the particle to changes in its Existence Momentum
and, if the cause of gravitation is purely spatial, then the temporal component will
be zero, so that

ṁ

m
= −

(
c2uσ̇ du

dσ
− σ̇σ̈ − uω2σ2σ̇ du

dσ
− u2ωω̇σ2 − u2ω2σσ̇

)
(c2u2 − σ̇2 − u2ω2σ2)

(3.3)

This naturally integrates immediately to give:-

ln m = −
ln
(
c2u2 − σ̇2 − u2ω2σ2

)
2

+ k (3.4)

c©P.G.Bass 5 G1 ver. 2.2.4
November 2009



c©P.G.Bass December 2001

Initial conditions may be chosen to correspond to an apse of the spatial trajectory so
that when σ̇ = 0,m = m0, ω = ω0, u = u0, and σ = σ0 giving

k = ln m0

(
c2u2

0 − u2
0ω

2
0σ2

0

)1/2
(3.5)

Note that m0 is not the rest mass but the energy mass at the apse.
Eq.(3.5) inserted into (3.4) gives

m =
m0

(
c2u2

0 − u2
0ω

2
0σ2

0

)1/2

(c2u2 − σ̇2 − u2ω2σ2)1/2
(3.6)

Eq(3.6) represents the energy mass of the particle as a function of its velocity in D1.
To eliminate the term in ω̇ in (3.3), use is made of the fact that gravitation is a purely
radial effect with respect to the origin so that the radial normal, (t), component of
(3.2) must also be zero. Therefore this gives

ṁ

m
= −2

σ̇

σ
− σ̇

u

du

dσ
− ω̇

ω
(3.7)

so that

−u2ωω̇σ2 = u2ω2σ2

(
ṁ

m
+ 2

σ̇

σ
+

σ̇

u

du

dσ

)
(3.8)

Note that this is identical to the statement that angular momentum is constant.
Substitution of (3.8) into (3.3) then gives after reduction

ṁ

m
= −

(
c2uσ̇ du

dσ
− σ̇σ̈ + u2ω2σσ̇

)
(c2u2 − σ̇2)

(3.9)

so that with substitution of (3.9) into (3.2), both the radial normal, (t), and the
temporal components vanish and there is left after reduction

dM
dτ

=
m
(
σ̈ − u2ω2σ − σ̇2

u
du
dσ

)
n(

1− σ̇2

c2u2

) (3.10)

This represents the resultant reaction of the gravitating mass to changes in its Exis-
tence Momentum.
Next the variation of the total energy of the mass as a function of its radial position
from the origin will be determined for comparison with (3.10).
The total energy of matter in D0 was, in [1], shown to be the product of its energy
mass and the square of the magnitude of its Existence Velocity. Extending this to the
Domain D1, the total energy of the mass here is given by

E = mc2u2 (3.11)

Differentiating this with respect to σ gives

dE

dσ
=

dm

dσ
c2u2 + 2mc2u

du

dσ
(3.12)

Converting the differential of the mass to one involving the time then gives

dE

dσ
=

ṁ

σ̇
c2u2 + 2mc2u

du

dσ
(3.13)
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(3.9) may now be substituted for ṁ to give after reduction

dE

dσ
= m

(
c2udu

dσ
+ σ̈ − u2ω2σ − 2 σ̇2

u
du
dσ

)
(

1− σ̇2

c2u2

) (3.14)

This represents the resultant spatial variation of total energy with radial distance.
Now comparing (3.14) with the magnitude of (3.10) it is clear that

dE

dσ
=

dM

dτ
+ mc2u

du

dσ
(3.15)

However, for purely gravitational motion, there is no artificially applied force and
therefore the total energy of such a free particle within D1 will be constant, i.e.

dE

dσ
= 0 (3.16)

Insertion of this into (3.15) then gives

dM

dτ
= −mc2u

du

dσ
(3.17)

This relationship shows that the cause of gravitational motion in D1 is a reaction force
generated within the particle proportional to it’s energy mass. The term −c2udu

dσ
has

the dimensions of acceleration and as can be seen is solely a function of the charac-
teristics of the Domain. For this reason this term is now defined as the Gravitational
Acceleration Potential of D1

3.2 The Equation of Motion.

The equation of motion of the gravitating mass may now be obtained by the simple
substitution of the magnitude of (3.10) into (3.17), the result being

σ̈ = −c2u
du

dσ
+ 2

σ̇2

u

du

dσ
+ u2ω2σ (3.18)

This is also evident from (3.14) when (3.16) is inserted. Equation (3.18) is the equation
of free planar motion of a mass within D1. The term in u2ω2σ is the centripetal
acceleration resulting from the rotational nature of the motion about the origin. The
term in 2 σ̇2

u
du
dσ

is an acceleration caused by the radial velocity as the particle mass
moves through the varying temporal field surrounding the gravitational source. Both
this and the centripetal term act in opposition to the main gravitational term, the
Acceleration Potential.
The nature of the gravitational motion is clearly determined by the sign of the gradient
of u, and it will be shown later that this sign is positive for a Domain identical to the
Solar System.

3.3 Mass and Energy.

It was shown in [1] that in D0the cause of the variation of mass as a function of spatial
velocity was the manner in which artificially induced kinetic energy was stored. In
D1, for the type of motion under consideration, by virtue of (3.16) artificially induced
kinetic energy does not exist and consequently the variation of mass, as exhibited by

c©P.G.Bass 7 G1 ver. 2.2.4
November 2009



c©P.G.Bass December 2001

(3.6) must have a different cause. To investigate this, (3.16) is substituted into (3.12)
to give, after separation of variables

dm

dσ
= −2

m

u

du

dσ
(3.19)

Solution of this simple equation gives

m = m0
u2

0

u2
(3.20)

showing that in D1 because u is a function of σ, energy mass is solely a function of
position on the radius vector from the origin. Now substitution of (3.20) back into
(3.11) then gives

E = m0c
2u2

0 (3.21)

e.g. the constant value of the total energy of the gravitating mass which is seen to be
that at the point taken for initial conditions.
As mentioned above, m, by virtue of the function u, is solely a function of σ. However,
because m is the mass equivalent of E which, being constant for all σ, therefore
indicates that in (3.20) it cannot be the amount of matter energy that is varying, but
some other parameter associated with D1. The only other parameter involved is u and
the mechanism behind the variation of mass derives from the fact that u is a measure of
the temporal rate of D1 and if the motion of a mass involves movement along a radius
vector from the origin, it therefore moves continuously through a varying temporal
rate. Because the units of mass include the square of time, these, and consequently
the value of mass must vary along σ according to the square of the function u.

3.4 Weight

Now (3.16) and (3.17) indicate that the gravitationally accelerated condition of the
mass is its natural state of existence in D1. To change this state of existence, in either
assisting or resisting the gravitational effect, energy must be provided. As an example
of this consider the simple case in which gravitational motion of a particle mass is
prevented at some distance σ1 from the centre of the source. Thus in (3.15) putting

dM

dτ
= 0 (3.22)

gives
dE

dσ
= mc2u

du

dσ
(3.23)

But because there is no motion both sides of (3.23) must be constant and it can be
written

Fg = m1c
2u1

(
du

dσ

)
1

(3.24)

where Fg is the constant force applied to resist gravitation and is therefore a measure
of the weight of the particle mass. Note that the weight of any particle mass is a
variable dependent upon its radius vector position from the origin of the gravitational
source. Therefore, if the particle were far enough away from the origin, u would
become constant, its gradient zero and therefore the weight of the particle also zero.
This is of course entirely in keeping with experience within the Solar System. Note
also that if the sign of du

dσ
were negative, (3.24) shows that the weight of the particle

mass in an anti-gravitational field would be negative.
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4 Correlation Between the Domain D1 and the Solar System

To this point the analysis has been somewhat generalised because the function u, and
therefore D1, has only been partially defined. u is the most important parameter
associated with D1 dictating its inherent characteristics and those of existence within
it. u could be specified to be any arbitrary function of σ, the resulting hypothetical
domains thereby exhibiting gravitational and other characteristics of various types
and degrees. To determine D1 such that it possesses the gravitational characteristics
of ponderable matter in the Solar System, requires therefore the determination of the
appropriate function for u.

4.1 Determination of the Function u.

Because gravitation is a purely radial effect, the function u can most easily, and
without any loss of generality, be determined by establishing a correlation between
Newton’s gravitational equation for free rectilinear motion, and the appropriate ap-
proximated form of (3.18).
The former is given by

d2r

dt2
= −γ mg

r2
(4.1)

Where r is the distance to the centre of the gravitational source, mg is the generat-
ing mass of the source and γ is Newton’s constant of proportionality. Now (4.1) is
expressed in terms of the spatial and temporal axes of D0, Pseudo-Euclidean Space-
Time. However, this relationship was empirically derived within primarily the gravi-
tational influence of the Earth, and consequently the most accurate form of it would
be obtained by its expression in terms of the spatial and temporal axes of a Domain
representing the Earth’s gravitational field. Equation (4.1) would then be the classical
approximation to such an equation. If D1 is to represent this Domain then Newton’s
rectilinear gravitational equation expressed in the spatial and temporal axes of D1

would be
σ̈ = −γ mg

σ2
(4.2)

and σ must differ from r and, over short periods, τ from t by incremental amounts
not discernible in Newton’s experimentation. These conditions will be proved later.
The equation of free rectilinear motion in D1 is obtained from (3.18) by putting ω to
zero, viz.

σ̈ = −c2u
du

dσ
+ 2

σ̇2

u

du

dσ
(4.3)

Comparing (4.2) with (4.3), as the former is independent of a velocity term, the
appropriate approximation of (4.3) is obtained by ignoring the term involving σ̇. This
merely means that in Newton’s experimentation the effect of the velocity ratio σ̇

cu ,

(or
dr/dt

c ), was too small to be observed. Thus equating the final approximation of
(4.3) with (4.2) gives

γ mg

σ2
= c2u

du

dσ
(4.4)

and where there now appears on the right hand side the Gravitational Acceleration
Potential of D1. Equation (4.4) may be integrated to give

−α

σ
=

u2

2
+ k (4.5)
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where
α =

γ mg

c2
(4.6)

is the so called gravitational radius of the source. The constant of integration is
obtained by introducing the boundary condition that as σ → ∞, u → 1, i.e. as σ →
∞, D1 → D0. This gives k = -1/2 which when inserted into (4.5) gives the function
u thus

u =
(

1− 2α

σ

)1/2

(4.7)

From this it is easily seen that with u being positive, the gradient of u along all radius
vectors from the source is also positive. The consequence is that the gravitational
effect within D1 is to result in motion towards the origin, or gravitational source, as
it does in the Solar System.
To demonstrate that D1 as characterised herein is truly representative of the gravi-
tational effects of concentrated matter in the Solar System, it is necessary to provide
proofs to the following three statements:

(i) That σ differs from r, and, over short periods, τ from t by incremental amounts
not discernible in mechanical experimentation.

(ii) That the relationship between D1 and D0 is such that (4.1) is indeed the classical
approximation of (4.2).

(iii) That free motion within D1 is identical to that observed in the Solar System.

The first two of these statements can be proven via establishment of the relation-
ship between the respective polar axes, and the time, in D1 and D0.
The third proof will be demonstrated in the next section by the derivation of the equa-
tion of a central orbit in D1 and its comparison with that obtained from the General
Theory of Relativity and with observable planetary motion in the Solar System. A
rigorous solution to this equation is also presented.

4.2 Relationship Between the Polar Co-ordinate Axes of D1 and D0.

This relationship can be established by the temporal transformation of a spatial ve-
locity in D1 to the Domain D0, and comparing the resulting co-ordinate terms with
the equivalent parameters in D0.
Thus taking the spatial component of (2.11)

ῡ = σ̇n + uωσt (4.8)

The equivalent expression in the co-ordinates of D0 is

v =
dr

dt
n +

dϕ

dt
rt (4.9)

Consider the radial component of (4.8) first

σ̇ =
dσ

dτ
(4.10)

temporally transforming this to the Domain D0 using (2.16)

uσ̇ =
dσ

dt
(4.11)
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Comparing this with the radial component of (4.9), if

dσ

dt
=

dr

dt
(4.12)

then upon integration
σ = r + k (4.13)

The constant of integration relates to the boundary conditions of the two Domains.
The lower boundary condition is not known because D1 is not homogeneous in this
region. However, the other boundary at which both domains are homogeneous can
be utilised as follows. From (4.7) write

u2σ2 = σ2 − 2ασ (4.14)

differentiate this with respect to r.

d

dr

(
u2σ2

)
= 2

dσ

dr
(σ − α) (4.15)

Inserting (4.12) and (4.13) into the right hand side of (4.15) then gives

d

dr

(
u2σ2

)
− 2r = 2 (k − α) (4.16)

and this expression must conform to the boundary condition that as r→∞, σ→r and
u→1. i.e. D1 → D0. At this boundary the left-hand side of (4.16) vanishes leaving

k = α (4.17)

Thus in (4.12) this gives simply
σ = r + α (4.18)

as the relationship between the radial axes of D1 and D0. This expression, together
with (4.6), shows that σ differs from r by an incremental amount not discernible in
mechanical experimentation. i.e. proof of the spatial part of statement (i) above. It
should be noted that the above process is essentially the same as that in [2] where
the same result is obtained from the requirement that the two sets of co-ordinates be
“harmonic”. It should also be noted that (4.7) and (4.18) are only valid in homoge-
neous regions of D1 i.e. outside the generating mass of the gravitational source. This
”extension” of radial distance occurs inside the gravitational source and (4.18) is the
resultant effect outside the geometric dimensions of the source.

Now consider the radial normal terms in (4.8) and (4.9). Extracting and equating
the angular rates, noting that the angular rate in D1 is already a function of time in
D0

uω =
dφ

dt

=
dϕ

dt
(4.19)

Integrating
ϕ = φ (4.20)

Where the constant of integration may be made zero by assuming a common reference
radial in both domains. Thus angles in D1 and D0 are identical. This is to be expected
as gravitation is a purely radial effect.
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4.3 The Temporal Relationship Between D1 and D0

The temporal relationship between D1 and D0 can be established by integrating (2.19)
and inserting (4.7). This gives

τ = ut = t

(
r + α

r − α

)1/2

(4.21)

where the constant of integration has been put to zero by taking a common artificial
temporal origin in both D1 and D0. Thus, where, as in Newton’s experiments, the
inequality σ >> 2γmg

c2 , (or r >>
γmg

c2 ), is valid, over short periods of time τ ≈ t.
This constitutes proof of the temporal part of Statement (i) above.

4.4 The Classical Approximation to the Equation of Free Rectilinear Mo-
tion in D1

Utilising the above results it is now possible to show that Newton’s gravitational
equation, (4.1), is indeed the classical approximation of (4.2).
From (2.16) and (4.18)

dσ

dτ
=

1
u

dr

dt
(4.22)

so that for the left hand side of (4.2)

d2σ

dτ2
=

1
u

d

dt

(
1
u

dr

dt

)
(4.23)

working this out gives
d2σ

dτ2
=

1
u2

d2r

dt2
− 1

u3

(
dr

dt

)2
du

dσ
(4.24)

Substitution for u from (4.7) and for its spatial gradient, and then for σ from (4.18)
gives

d2σ

dτ2
=
(

r + α

r − α

)
d2r

dt2
+

α

(r − α)2

(
dr

dt

)2

(4.25)

Once again if r >> α, then (4.25), for the left hand side of (4.2) approximates to

d2σ

dτ2
≈ d2r

dt2
(4.26)

For the right hand side of (4.2), substitution from (4.18) and (4.6) and taking the
approximation yields

−γmg

σ2
≈ −γmg

r2
(4.27)

Thus completing the exercise and providing proof of Statement (ii) above.

5 Planetary Orbits in D1 – Equation of the Orbit and its Solution.

The equation of a planetary orbit can be derived in either the axes of D1 or those
of D0. In the former it is generally known as Einstein’s Equation of Planetary Mo-
tion. The latter is derived in [2] from the metric of the space–time of the General
Theory. The former is derived here from foregoing results as a first demonstration
that gravitational motion in D1 is identical to that in the space-time of the General
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Theory. A solution of the orbit is also obtained which when approximated for the
appropriate astronomical situations shows that it also satisfactorily represents gravi-
tational motion in the Solar System. As such this solution thereby provides the proof
for Statement (iii) in Section 4 above. The equation of the orbit in the axes of D0 is
derived in Appendix B for comparison with that in [2].

5.1 A Planetary Orbit in the Axes of D1 – Einstein’s Equation of Plane-
tary Motion.

Note – In this Section reference is made to results obtained in Appendix C.
To derive the equation of planetary motion in the axes of D1, consider first (3.7).
This equation can be integrated immediately to give

lnm = ln uωσ2 + k (5.1)

Inserting the usual initial condition determines the constant of integration as

k = ln m0u0ω0σ
2
0 (5.2)

so that in (5.1)
muωσ2 = m0u0ω0σ

2
0 (5.3)

Substituting for m from (3.6) then gives

ωσ2(
1− σ̇2

c2u2 − ω2r2

c2

)1/2
=

ω0σ
2
0(

1− ω2
0σ2

0

c2

)1/2
(5.4)

In line with convention, this constant is now designated as h.However, from (C7) it
can also be written as

h = ω′σ2 (5.5)

The equation of the orbit can now be derived in the usual manner as follows. Put

σ =
1
µ

(5.6)

and from (5.5) and (5.6) compute the second order differential term in (C9) as

d2σ

dτ2
p

= −µ2h2 d2µ

dφ2
(5.7)

Substitution of this, together with (5.5) and (5.6) into (C9) then yields the desired
equation of the orbit thus

d2µ

dφ2
+ µ =

αc2

h2
+ 3αµ2 (5.8)

5.2 Solution of the Orbital Equation in D1

In the literature the equation of the trajectory of a planetary orbit has been obtained
from an approximate solution of the orbital equation for two particular cases. Firstly,
for closed orbits, it has been shown to approximate a precessing ellipse, viz. [2] pp
199, which constructs an approximate solution of (B14), (the equation of the orbit
expressed in the axes of D0), for a truly elliptical orbit. A similar result is obtained
in [3], pp247 Example 102, where an approximate solution of (5.8) is obtained. This
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solution however, applies only to a circular orbit. Secondly, an approximate solution
of (B14) has been obtained for an open orbit in the extreme form of a light ray passing
close to the geometrical radius of a gravitational source, viz. [2] pp 202, and has thus
been shown to be a precessing hyperbola.
In this Section, an exact solution is obtained for the planetary orbit in D1, (5.8),
by assuming it to be a precessing conic section and using, essentially, the method of
Frobenús. This solution is then reduced to the above approximate forms via a process
of logical simplification.
Note – In this Section reference is made to results obtained in Appendices B and C.

5.2.1 Equation of the Spatial Trajectory – The Basic Curve.

The equation of the basic curve of the trajectory will be derived from the first integral
of (5.8) which is á priori obtained from (B8) by computing dσ/dτp from the first order
term in (C2), then substitution of (5.5), (5.6) and (B16) to give(

dµ

dφ

)2

=
c2ε2

h2
− cu2

h2
− u2µ2 (5.9)

Substitution of (4.7) then gives the required relationship as(
dµ

dφ

)2

=
c2

h2

(
ε2 − 1

)
+

2α c2

h2
µ− µ2 + 2αµ3 (5.10)

the first integral of (5.8).
If the integral of (5.10) is assumed to be a precessing conic section then it will take
the form

µ =
1
L
{1 + e cos (φ− Ω)} (5.11)

where

L is the semi latus rectum

e is the eccentricity of the basic curve

φ is the angle of the focal point radius vector to the major axis

Ω is the angle of precession of an apse of the trajectory.

Differentiating (5.11) with respect to φ yields

dµ

dφ
= − e

L
sin (φ− Ω)

(
1− dΩ

dφ

)
(5.12)

but from (5.11)

sin (φ− Ω) =

{
1−

(
µL− 1

e

)2
}1/2

(5.13)

Thus (5.12) and (5.13) give, after expansion(
dµ

dφ

)2

=

{(
e2 − 1

)
L2

+
2µ

L
− µ2

}(
1− dΩ

dφ

)2

(5.14)

Comparing (5.14) with (5.10), to obtain the term in µ3 with the correct coefficient, it
is necessary to put (

1− dΩ
dφ

)2

= (b− 2αµ) (5.15)
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where b is some constant.

Inserting (5.15) into (5.14) and expanding gives(
dµ

dφ

)2

=

(
e2 − 1

)
L2

b +
2
L

{
b− α

L

(
e2 − 1

)}
µ−

(
b +

4α

L

)
µ2 + 2αµ3 (5.16)

Again, comparing (5.16) with (5.10), for the coefficient of µ2 to be –1, it is necessary
to put

b = 1− 4α

L
(5.17)

so that in (5.16) this gives after reduction(
dµ

dφ

)2

=

(
e2 − 1

)
L2

(
1− 4α

L

)
+

2
L

{
1− α

L

(
3 + e2

)}
µ− µ2 + 2αµ3 (5.18)

Now, equating the coefficient of µ in (5.18) with that in (5.10) then gives

h2 =
αc2L

1− α
L (3 + e2)

(5.19)

L can be determined from initial conditions applied to (5.11) to be

L =
1 + e

µ0
(5.20)

Inserting (5.20) and (5.4) for h into (5.19) then gives, after solving for ω2
0

ω2
0 =

αc2 (1 + e)2 µ3
0

{1− 2αµ0 + (1 + 2αµ0) e}
(5.21)

Now, for the basic orbit to be circular, i.e. e = 0, (5.21) reduces to

ω2
0 =

αc2µ3
0

1− 2αµ0
(5.22)

For values of ω0 below this, the basic orbit will be degenerative, and for values above
elliptical.
For the basic orbit to be parabolic, i.e. e = 1, (5.21) reduces to

ω2
0 = 2αc2µ3

0 (5.23)

For values of ω0below this the basic orbit will be elliptical and for values above hy-
perbolic.
Solving (5.21) for e gives

e = 1
2αµ0

[
ω2

0

c2µ2
0

(1 + 2αµ0)− 2αµ0

± ω0
cµ0

{
ω2

0

c2µ2
0

(1 + 2αµ0)
2 − 16α2µ2

0

}1/2
] (5.24)

which can also be obtained by equating the constant terms in (5.10) and (5.18).
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Now, for the case in which ω0is equal or very close to its terminal value in D1, its
upper boundary, i.e. ω0 = cµ0,(5.24) reduces to

e =
1

2αµ0

{
1±

(
1 + 4αµ0 − 12α2µ2

0

)1/2
}

(5.25)

and it is noted for future reference that if 4αµ0 << 1, (5.25) may be approximated
by

e ≈ 1
αµ0

(5.26)

There appears to be a second root under this criteria, i.e. at e = 0.However, if the
terminal value of ω0 is entered into (5.22), it reduces to 3αµ0 = 1,which contradicts the
inequality. This second root may therefore be discounted for astronomical situations.
Thus, the basic curve of the trajectory is now seen to be given by the combination of
the three equations; (5.11), (5.20) and (5.24). The full solution to (5.10) is completed
by the determination of the function Ω.

5.2.2 Precession of the Perihelion of the Basic Curve.

Determination of Ω is effected by substituting (5.11), (5.17) and (5.20) into (5.15) to
give (

1− dΩ
dφ

)2

= 1− 6αµ0

1 + e
− 2αµ0e

1 + e
cos (φ− Ω) (5.27)

Putting
φ− Ω = χ (5.28)

reduces (5.27) to the following elliptic integral

dφ =
(

1− 6αµ0

1 + e
− 2αµ0e

1 + e
cos χ

)−1/2

dχ (5.29)

the solution of which is

φ =
(
1− 6αµ0

1+e

)−1/2
{(

1 + 3α2µ2
0e

2

(1+ e− 6αµ0)

)
χ

− αµ0e sinχ
(1 + e− 6αµ0)

+ 3α2µ2
0e

2 sin 2χ
2 (1 + e− 6αµ0)

− . . .

} (5.30)

the constant of integration being zero.
This relationship, together with (5.28) then permits the determination of Ω for any
value of φ, for any condition. Thus (5.30), together with (5.11), (5.20) and (5.24),
albeit somewhat cumbersome, constitutes the exact solution of (5.10).

5.2.3 Comparison with Existing Approximate Solutions.

To compare the above results with the approximate solutions of the General The-
ory mentioned earlier, it is only necessary to simplify (5.30) for known astronomical
conditions.
Firstly, terms in µ2

0 may be considered negligible in comparison with unity, (5.30)
then becomes

φ ≈
(

1− 6αµ0

1 + e

)−1/2{
φ− Ω− αµ0e sin (φ− Ω)

(1 + e− 6αµ0)

}
(5.31)
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in which (5.28) has been re-inserted.
For astronomical conditions, Ω will be very small compared to φ so that (5.31) may
be further simplified to

φ ≈
(

1− 6αµ0

1 + e

)−1/2{
φ− Ω +

αµ0e

(1 + e− 6αµ0)
(Ω cos φ + sinφ)

}
(5.32)

This is solvable for Ω giving

Ω ≈

{
1−

(
1− 6αµ0

1 + e

)1/2
}

φ + αµ0e sinφ
(1 + e− 6αµ0)(

1− αµ0e cos φ
(1 + e− 6αµ0)

) (5.33)

Now, if the astronomical situation is such that the additional inequality αµ0 << 1 is
valid, (5.33) finally reduces to

Ω ≈ 3αµ0

1 + e
φ +

αµ0e sinφ

1 + e
(5.34)

Consider first, an orbit with an elliptical basic curve. When φ=2π, (5.34) becomes

Ω ≈ 6παµ0

1 + e
(5.35)

in agreement with the solution of [2], pp199, Eq(58.43).
For a circular orbit, e = 0 which gives in (5.34)

Ω ≈ 3αµ0φ (5.36)

However, µ0 may be approximated for a circular orbit from (5.19) and (5.20) to be

µ0 ≈
αc2

h2
(5.37)

Substitution of this into (5.36) then yields

Ω ≈ 3α2c2

h2
φ (5.38)

which agrees with the approximate solution of [3], pp 247, Example 102, and represents
a maximum value of Ω.
For the special case in which ω0 = cµ0, its upper boundary, and the geometric radius
of the gravitational source is much greater than its gravitational radius, then (5.26)
may be used for the eccentricity of the basic trajectory. Thus inserting (5.26) into
(5.34) gives

Ω ≈ 3α2µ2
0

1 + αµ0
φ +

αµ0 sinφ

1 + αµ0
(5.39)

which may immediately be further approximated to

Ω ≈ αµ0 sinφ (5.40)

This represents the rotation of the perihelion of the hyperbolic curve and constitutes
a minimum value of Ω. To determine the total angle of deflection of the trajectory,
(5.20), (5.26) and (5.40) are now substituted into (5.11) to give

µ ≈ µ0

1 + αµ0
{αµ0 + cos (φ− αµ0 sinφ)} (5.41)
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expanding the cosine term and taking the usual approximation yields after reduction

µ ≈ µ0 (2αµ0 + cos φ) (5.42)

The total angle of deflection may now be approximated from the two boundary con-
ditions of the orbit where µ = 0.At these boundaries if φ = ±

(
π
2 + δ

)
, then applying

these conditions to (5.42) gives
δ ≈ 2αµ0 (5.43)

and the total angle of deflection of the trajectory is then

2δ ≈ 4αµ0 (5.44)

in agreement with the approximate solution in [2], pp202, Eq[59.18], for the “bending
of light rays” in close proximity to a gravitational source.
The results of this Section provide the final proof for Statement (iii) in Section 4.

6 Concluding Remarks

The conventional mathematical approach adopted here has, for the gravitational ef-
fects studied, produced results that are in agreement with those obtained from the
General Theory of Relativity, and as observed for astronomical motion within the
Solar System. However, the concepts from which this approach stems, e.g. that
all matter must possess an Existence Velocity within a linear Relativistic Domain,
as herein defined, differ from the concepts upon which the General Theory is based.
That difference is in the manner in which the “gravitational field” of the source causes
motion. In the General Theory this is defined as due to a “curvature” of the space-
time continuum, proportional to, and in the direction of, the gravitational source.
The “world line” of any gravitating mass is then said to be curved in the direction of
the source.

In the development presented here, the space-time continuum of the Relativistic
Domain D1 is defined to be spatially and temporally linear, and gravitationally in-
duced motion has been shown to be caused by an Acceleration Potential, generated
by the gravitational source, proportional to its mass and inversely proportional to the
distance from it. The effect of this Potential has in turn been shown to be augmented
by the result of temporal dilatation produced by the source.
Because of this fundamental difference in which gravitational motion is caused, the
concepts presented in this paper cannot be considered as merely a different mathe-
matical formulation of gravitation, but should be considered as an alternative to that
of the General Theory.

In both concepts the continuum of Pseudo-Euclidean Space-Time, is required to
possess characteristics such that it interacts with matter energy to produce a new
continuum, which in turn causes gravitationally induced motion. Also, both concepts
incorporate temporal dilatation plus the small radial extension of distance from the
source. Both of these latter effects are created within the body of the gravitational
source and then extend beyond its geometric confines. In the General Theory tem-
poral dilatation is treated as a consequence of gravitation while in the presentation
here it is shown to contribute to the cause of it. Accordingly, in view of the great
similarity of results in the two concepts, it is believed that the purported cause of
gravitationally induced motion in the General Theory, the curvature of space-time,
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is a mis-interpretation, and this curvature is nothing more than the curvature of the
trajectory of the gravitating mass, rather than of the space-time continuum in which
it moves. If this is so, the consequence is that the continuum proper of the General
Theory must therefore be identical to that of D1. Some evidence for this is shown in
Appendix D. Also, the derivation of Einstein’s equation of planetary motion from the
characteristics of D1 further supports this opinion.

The primary cause of gravitational motion in the Domain D1 is its Acceleration
Potential. This Potential is in turn augmented by the spatially dependent temporal
dilatation shown to exist in that Domain, and represented by the parameter u. The
generation of these effects within a gravitational source in D1 is therefore central to
this theory, and a mechanism for it will be presented in a next paper.

The successful application of the concepts of Relativistic Domains in both a
Pseudo-Euclidean Space-Time, (D0, see [1]), and a Gravitational one (D1), as well
as representing a unification of mathematical analysis within them, has also estab-
lished a unique link between them such that the variation of only one parameter, the
temporal rate u, is sufficient to transform one into the other. In fact this can be com-
pletely generalised with the result that both the Pseudo-Euclidean and Gravitational
space-times are merely particular cases of a potentially infinite number of hypothetical
Relativistic Domains in which the parameter u can be of any form. Pseudo-Euclidean
Space-Time would perhaps retain its special character insofar as its temporal rate
possessed the unique value of unity. The Domain D1is of course equally if not more
important because it describes the space time continuum of the gravitational effects
within Solar System and beyond.

Throughout the text there are a number of results that can be taken further.
Of particular interest are the questions of inertial mass, naturally generated kinetic
energy and effects inside the geometric constraints of the gravitational source itself.
The same applies when given a set of special conditions outside the source. Most
particular in this latter respect is the situation, possibly hypothetical, where the
geometrical radius of a gravitational source is of the same order of magnitude as twice
the gravitational radius. At the point of equivalence the temporal rate of D1 becomes
zero, i.e. time stops.

Finally, it should be remembered that, for a single isolated gravitational source,
despite the agreement of the results in this paper with those of the General Theory,
and with observed planetary motion in the Solar System, all such results, strictly from
the point of view of mathematical rigour, are approximations. This is so because in all
cases the analysis assumes that the gravitational source is stationary, i.e. not affected
by the gravitational influence of the gravitating mass. No matter how small the latter,
there will always be an effect on the larger mass. Therefore the results here and in the
General Theory are only approximately correct in the case where the gravitational
source is much larger than the gravitating mass. Where sizes are comparable it is
necessary to take account of the mutual gravitational attraction, which effectively
results in a new Relativistic Domain, D2.
The appendices to the main text provide additional evidence that gravitational motion
within the Relativistic Domain D1 is identical to that postulated in the General
Theory.
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APPENDIX A

Transformation of the Equation of Free Planar Motion to the Axes of D0

As a further example of the relationship between D1 and D0, the equation of planar
motion in D1 (3.18) is, in this appendix, transformed to the axes of Do.
Transformation of the term σ̈ in (3.18) is given in terms of u by (4.24). Transformation
of the other terms is as follows.
From (2.19) and (4.18)

u2ω2σ =
(

dφ

dt

)2

(r + α) (A.1)

and from (2.19), (4.12) and (4.18)

2σ̇2

u

du

dσ
=

2
u3

(
dr

dt

)2
du

dr
(A.2)

and finally from (4.12)

−c2u
du

dσ
= −c2u

du

dr
(A.3)

The full transformation of (3.18) in terms of u then becomes, from (4.24), (A.1), (A.2)
and (A.3)

d2r

dt2
= −c2u3 du

dr
+

3
u

(
dr

dt

)2
du

dr
+ u2

(
dφ

dt

)2

(r + α) (A.4)

Substitution of (4.7) and (4.18) for u and σ, then expands this to the final result

d2r

dt2
= −αc2 (r − α)

(r + α)3
+

3α

r2 − α2

(
dr

dt

)2

+ (r − α)
(

dφ

dt

)2

(A.5)
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APPENDIX B

Transformation of the Equation of the Orbit to the Axes of D0

The equation of a planetary orbit in the axes of Pseudo-Euclidean Space-Time has,
in [2] been derived, in the form of a first order equation, from a Lagrangian analysis
of the metric of the General Theory. To obtain that form here, the simplest process
is to obtain the first integral of (C.8) from which the desired relationship can be
obtained directly. The easiest manner to obtain the first integral of (C.8) is firstly,
via a re-arrangement of (5.4), thus

σ̇2 = −u2ω2σ2 + c2u2

{
1− ω2σ4

ω2
0σ4

0

(
1− ω2

0σ2
0

c2

)}
(B.1)

From (5.3) note that

m =
m0u0ω0σ

2
0

uωσ2
(B.2)

which with (3.20) gives
u0

u
=

ω0σ
2
0

ωσ2
(B.3)

Inserting this into (B.1) then gives

σ̇2 = −u2ω2σ2 + c2u2

{
1− u2

u2
0

(
1− ω2

0σ2
0

c2

)}
(B.4)

which incidentally can be shown to be the first integral of (3.18), the equation of
planar motion in D1.
Now, from (2.15)

dσ

dτp
= σ̇

dτ

dτp
=

σ̇(
1− σ̇2

c2u2 − ω2σ2

c2

)1/2
(B.5)

so that substitution for σ̇ from (B.4) yields(
dσ

dτp

)2

=
c2u2

0(
1− ω2

0σ2
0

c2

) − c2u2 − u2
0ω

2σ2(
1− ω2

0σ2
0

c2

) (B.6)

Also from (C.7) and (B.4)

ω2 = ω′2 u2

u2
0

(
1− ω2

0σ2
0

c2

)
(B.7)

which when inserted into (B6) yields(
dσ

dτp

)2

=
c2u2

0(
1− ω2

0σ2
0

c2

) − c2u2 − u2ω′2σ2 (B.8)

as the first integral of (C.8).

Transformation to the Axes of D0 and Derivation of the Equation of the Orbit.
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Transformation of (B.8) to the axes of D0 via (4.7), (4.12) and (4.13) gives

(
dr

dτp

)2

=
c2
(

r0 − α
r0 + α

)
1− ω2

0

c2 (r0 + α)2
− c2

(
r − α

r + α

)
−
(

dφ

dτp

)2 (
r2 − α2

)
(B.9)

For simplicity write this as(
dr

dτp

)2

= c2ε2 − c2

(
r − α

r + α

)
− h2 (r − α)

(r + α)3
(B.10)

where (5.5) has also been inserted
The equation of the orbit, (expressed in the axes D0), can now be derived in the
conventional manner as follows. Put

r =
1
ς

(B.11)

so that
dr

dτp
= − dς

dφ

h

(1 + ας)2
(B.12)

Inserting this and (B.11) into (B.10) yields(
dς

dφ

)2

=
c2ε2

h2
(1 + ας)4 − c2

h2
(1− ας) (1 + ας)3 − ς2 (1− ας)2 (B.13)

Expanding, this finally reduces to the desired expression, thus(
dς
dφ

)2

= c2

h2

(
ε2 − 1

)
+ 2αc2

h2

(
2ε2 − 1

)
ς +

(
6α2c2ε2

h2 − 1
)

ς2

+2α3c2

h2

(
2ε2 + 1

)
ς3 + α2

{
1 + α2c2

h2

(
ε2 + 1

)}
ς4

(B.14)

as derived in [2], pp 198, Eq[58.35].
Finally, in (B.10) the simplifying identity

ε =

(
r0 − α
r0 + α

)1/2

{
1− ω2

0

c2 (r0 + α)2
}1/2

(B.15)

was inserted. To shown that this is identical to the same parameter in [2], pp197,
Eq(58.26), insert (4.7) and (4.18) thus

ε =
u0(

1− ω2
0σ2

0

c2

)1/2
(B.16)

which from (3.6) and (3.20) becomes

ε =
cu2

(c2u2 − σ̇2 − u2ω2σ2)1/2
(B.17)

and which with (2.15) and (2.19) then gives

ε = u
dτ

dτp
= u2 dt

dτp
(B.18)
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so that insertion of (4.7) again into this finally gives

ε =
(

r − α

r + α

)
dt

dτp
(B.19)

As derived in [2].
Also from (5.5) it can be seen that the constant h in this paper is identical to the
parameter µ in [2], pp197, Eq(58.27). These results provide additional proof that a
central orbit in D1 is identical to that in the General Theory.
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APPENDIX C

Determination of the Equation of Free Planar Motion as a

Function of the Proper Time of the Gravitating Mass.

It is first noted for future reference that substitution for ṁ
m , derived from (3.19), into

(3.8) gives

ω̇ = −ω

(
2
σ̇

σ
− σ̇

u

du

dσ

)
(C.1)

First the second order variation of radial position with respect to the proper time of
the gravitating mass is computed thus

d2σ

dτ2
p

=
dτ

dτp

d

dτ

(
dτ

dτp

dσ

dτ

)
(C.2)

which from (2.15) becomes

d2σ

dτ2
p

=
(

1− σ̇2

c2u2
− ω2σ2

c2

)−1/2
d

dτ

{
σ̇

(
1− σ̇2

c2u2
− ω2σ2

c2

)−1/2
}

(C.3)

working this out yields

d2σ

dτ2
p

=
σ̈(

1− σ̇2

c2u2 − ω2σ2

c2

) +
σ̇
(

σ̇σ̈
c2u2 − σ̇3

c2u3
du
dσ

+ ωω̇σ2

c2 + ω2σσ̇
c2

)
(
1− σ̇2

c2u2 − ω2σ2

c2

)2 (C.4)

Substitution for ω̇ from (C.1) then gives after reduction

d2σ

dτ2
p

=
σ̈
(
1− ω2σ2

c2

)
− ω2σσ̇2

c2 − σ̇4

c2u3
du
dσ

+ ω2σ2σ̇2

c2u
du
dσ(

1− σ̇2

c2u2 − ω2σ2

c2

)2 (C.5)

Now substitution for σ̈ from (3.18) gives

d2σ

dτ2
p

= −c2u
du

dσ
+

u2ω2σ − uω2σ2 du
dσ(

1− σ̇2

c2u2 − ω2σ2

c2

) (C.6)

But

ω =
dφ

dτ
=

dφ

dτp

dτp

dτ
= ω′

(
1− σ̇2

c2u2
− ω2σ2

c2

)1/2

(C.7)

and insertion of this into (C.6) finally gives

d2σ

dτ2
p

= −c2u
du

dσ
− uω′2σ2 du

dσ
+ u2ω′2σ (C.8)

which is the required relationship, expressed in the axes of D1and the parameter
u.Substitution for u,(from (4.7)) and its spatial gradient, reduces (C.8) to

d2σ

dτ2
p

= −αc2

σ2
+ (σ − 3α) ω′2 (C.9)

being the equation of motion as a function of the proper time expressed fully in the
axes of D1.

Note that because the time dilatation effect is embodied in the proper time τp, the
reactive acceleration term due to this in (3.18), is not present in (C.9).
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APPENDIX D

The Red Shift of Atomic Spectra in D1.

This is the third classic test to which the General Theory was subjected to verify its
applicability within the Solar System. It is therefore necessary that the existence of
atomic spectra within D1 meet the same criteria.
Note that in this Appendix the value of Spatial Terminal Velocity is used for the
velocity of electromagnetic radiation in a vacuum. This has been done solely to enable
comparison of the results of this Appendix with similar effects in the General Theory.
It may not be strictly correct however, because such radiation must possess a mass,
however small, by virtue of Einstein’s universal energy-mass relationship, and it is not
possible, within a finite time to accelerate any mass to the Spatial Terminal Velocity of
a Relativistic Domain. Accordingly, it should also be noted that the Spatial Terminal
Velocity of D1 is by virtue of the function u,a variable dependent upon σ and so
therefore is the velocity of electromagnetic radiation as defined in this Appendix.
Accordingly, the wavelength of an atomic spectra at the point of emission in D1, the
surface of a gravitational source, a distance of σ1 from its centre, is given by

λ1 =
cu1

f1
(D.1)

where f1 is the frequency of the spectra, and cu1 its velocity of propagation at the
point of emission.
The solution of the rectilinear version of (3.18), (with ω = 0), for an initial condition
of σ̇0 = cu1 is

σ̇ = cu (D.2)

so that after travelling directly away from the source to a point of observation, a
distance of σ2 from the centre of the source, the wavelength of the spectra will be

λ′′1 =
cu2

f ′′1
(D.3)

Another spectra of an identical atom emitted at the point of observation will possess
a wavelength of

λ2 =
cu2

f2
(D.4)

so that from (D.3) and (D.4)
λ′′1
λ2

=
f2

f ′′1
(D.5)

f ′′1 is the frequency of the first spectra after travelling to the point of observation and
is given by

f ′′1 =
dn1

dτ2
=

dn1

dτ1

dτ1

dτ2
= f1

u1

u2
(D.6)

where n1 is an integral number of cycles and dτ1 and dτ2 are elements of time at the
points of emission and observation respectively. u1 and u2 are the temporal rates at
these locations. Therefore

λ′′1
λ2

=
f2u2

f1u1
=

E2u2

E1u1
(D.7)

where E1 and E2 are the energies imparted to the two respective waves by the process
of emission. Because this process is an internal function of the atom concerned, the
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energy of emission is independent of the location within the Domain in which it occurs.
Therefore

E1 = E2 (D.8)

and so
λ′′1 = λ2

u2

u1
(D.9)

Because u2 > u1, λ′′1exhibits an apparent red shift compared to λ2. Also note from
(D.7) and (D.8) it is clear that f1 = f2.
If the point of observation is sufficiently far from the point of emission, it may, (as in
the literature), be approximated to free space, i.e. u2 → 1, as in D0 and then

λ′′1 ≈
λ2

u1
(D.10)

which after insertion of (4.7) may be further approximated to

λ′′1 ≈ λ2

(
1 +

α

σ1

)
(D.11)

This is effectively the result most often quoted in the literature, [4], [5].
It should be noted that a comparison of the wavelength of the first wave upon reaching
the point of observation with its wavelength at the point of emission produces the
result

λ′′1 = λ1

(
u2

u1

)2

(D.12)

showing that the true red shift of the travelling wave is greater than when simply
compared to a wave emitted at the point of observation. Substitution of (D.12) into
(D.9) then gives

λ2 = λ1
u2

u1
(D.13)

as would be expected.
The mechanism behind the shift is that as the wave moves away from the source, it
continuously moves through an increasing temporal rate, which causes its frequency
to decrease. This produces a corresponding increase in spectral wavelength.
Note that from (D1), if the geometrical radius of the gravitational source is equal
to, (or less than), twice its gravitational radius, the propagation velocity of emission
is zero. Hence electromagnetic radiation from such a physical body is impossible.
This indicates that ”Black Holes” are at least mathematically permissible within the
Domain D1, as they are in the General Theory. However, it will be shown in a future
paper that there are other constraints which prohibit the formation of Black Holes
within the Relativistic Domain D1.
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APPENDIX E

Derivation of the Metric of General Relativity

from the Characteristics of Existence in D1

To establish the relationship between the metric of the General Theory and the char-
acteristics of existence in D1 it is necessary to extend (2.15) into the second spatial
plane thus

dτp

dτ
=

{
1− σ̇2

c2u2
−
(

dφ

dτ

)2
σ2

c2
−
(

dβ

dτ

)2
σ2

c2
sin2 φ

}1/2

(E.1)

where β is an angle in the second spatial plane. This is the temporal rate for three-
dimensional motion in D1. From (2.17), (4.12), and (4.18), (E.1) can be transformed
to a temporal distance in D0 thus

dx0 = cu

(
dτp

dτ

)
dt =

[
c2u2 (dt)2 −

(
dr

u

)2

− (r + α)2
{

(dφ)2 + (dβ)2 sin2 φ
}]1/2

(E.2)
where dx 0 is the distance moved along the temporal axis in an element of time dt in
D0.
Incorporating (4.7), with (4.18) incorporated therein, converts (E2) to

dx0 =
[
c2
(

r − α
r + α

)
(dt)2 −

(
r + α
r − α

)
(dr)2

− (r + α)2
{

(dφ)2 + (dβ)2 sin2 φ
}]1/2 (E.3)

as derived in [2], pp194, Eq(57.64) for the metric of the space-time of the General
Relativity in the co-ordinate axes of Pseudo-Euclidean Space-Time. The above process
shows that the metric of the General Theory is directly proportional to the temporal
rate of a gravitating mass in D1. This suggests that the metric of the General Theory
is a temporal metric rather than one of a true space-time interval.
Nevertheless, however (E.3) is interpreted, from the above it clearly involves three-
dimensional spatial terms and, as such, can only represent the metric of the General
Theory for the case in which three-dimensional spatial variation in position is involved.
If this variation is put to zero, then a metric for a spatially stationary point in the
co-ordinate system of the General Theory is obtained. Thus by putting dr, dφ and
dβ to zero in (E.3) gives

dx0 = c

(
r − α

r + α

)1/2

dt (E.4)

Re-inserting (4.7) and (4.18) then gives

dx0 = cudt (E.5)

so that the proper time of this point relative to Pseudo-Euclidean Space-Time is then

dτ =
dx0

c
= udt (E.6)

as derived in (2.18).
Thus the proper time of a spatially stationary point in the space-time of the General
Theory, relative to Pseudo-Euclidean Space-Time, is identical to the proper time of
D1 relative to D0.
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APPENDIX F

Radial and Radial-Normal Unit Vector Differentials in D1.

In this Appendix, proofs of the differentials of unit vectors in D1 as represented by
(2.7) and (2.8) are given.
Consider the vector σ̄ in D1.

σ̄ = σ n (F.1)

Differentiating this with respect to the time in D1.

dσ̄
dτ

= dσ
dτ

n + σdn
dτ

= σ̇n + ωσdn
dφ

(F.2)

Assume now that there is only radial normal motion, i.e. σ̇ = 0, then

dσ̄

dτ
= ωσ

dn

dφ
(F.3)

Because this motion is only a radial normal one, the right hand side can be equated
to a simple velocity term thus

ωσ
dn

dφ
= υt (F.4)

This must be valid for all values of ω including boundary conditions. The lower
condition is trivial, (when ω = 0, υ = 0), but at the upper condition of Terminal
Spatial Velocity in the radial normal direction, i.e. ωσ = c, the left hand side of (F.4)
becomes [

ωσ
dn

dφ

]
upper

= c
dn

dφ
(F.5)

At this boundary, temporal velocity is zero and spatial velocity is equal to the mag-
nitude of Existence Velocity and therefore the right hand side of (F.4) can be written

[υt ]upper = cut (F.6)

Thus from (F.5) and (F.6)
dn

dφ
= ut (F.7)

A similar proof exists for
dt

dφ
= −un (F.8)

These relationships exist because the Spatial Terminal Velocity in the radial normal
direction is different from the magnitude of Existence Velocity in this Domain.
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APPENDIX G

Reduction of Selected Relativistic Gravitational Equations

to their Equivalents in Classical Theory.

This is only effected for the more complex expressions, or in trivial cases, where a
special implication is involved. First it should be noted from (4.7) and (4.18) that the
gravitational radius of a gravitational source can be expressed as

α = r

(
1− u2

)
(1 + u2)

(G.1)

so that when u = 1, α = 0 and therefore, from (4.18) and (4.21)

σ = r and τ = t, so that σ̇ = ṙ (G.2)

Section 2.
(i) Eq.(2.11), Existence Velocity
(a) Reduction to the Special Relativistic version is effected by putting u = 1

V = ṙn + ωrt + j c

(
1− ṙ

c2
− ωr

c2

)1/2

(G.3)

(b) Reduction to the classical equivalent. In (G3) when c →∞

V = ṙn + ωrt + j∞ (G.4)

as found in [1] and in classical studies the temporal term is ignored.

Section 3.
(ii) Eq.(3.6), Mass
(a) Reduction to the Special Relativistic version is effected by putting
u = u0 = 1

m = m0

(
1− ω2

0r2
0

c2

)1/2

(
1− ṙ2

c2 − ω2r2

c2

)1/2
(G.5)

This can be compared with [1], Eq.(3.7) by putting ω = ω0 =0.

(b) Reduction to the classical equivalent. When in (G.5) c →∞

m = m0 (G.6)

(iii) Eq.(3.10), Rate of change of momentum.
(a) Reduction to the Special Relativistic version is effected by putting u = 1

dM
dτ

= m

(
r̈ − ω2r

)
n(

1− ṙ2

c2

) (G.7)

which becomes with insertion of (G.5)

dM
dτ

= m0

(
r̈ − ω2r

)
n(

1− ṙ2

c2

)(
1− ṙ2

c2 − ω2r2

c2

)1/2
(G.8)
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This can be compared with [1], Eq.(3.9) by putting ω = 0.
(b) Reduction to the classical equivalent. When in (G.8) c →∞

dM
dt

= m0

(
r̈ − ω2r

)
n (G.9)

(iv) Eq.(3.14), Spatial gradient of energy.
(a) Reduction to the Special Relativistic equivalent is effected by putting u = 1

dE

dr
= m

(
r̈ − ω2r

)(
1− ṙ2

c2

) (G.10)

which is the same as the magnitude of (G.7) and therefore shows that gravitation only
exists within the Special Theory of Relativity as an axiomatic addition as it does in
classical theory.

Section 5.
The planetary orbit. This is most easily reduced to the classical equivalent by first
putting α = 0 in (5.30) which gives

φ = χ (G.11)

So that this gives in (5.28)
Ω = 0 (G.12)

and therefore in (5.11)
1
r

=
1
L

(1 + e cos φ) (G.13)

the equation of a standard conic section, and in which the eccentricity, e, is reduced
from (5.24) to

e =
m0h

2µ0

F0
− 1 (G.14)

where
F0

m0µ0
= γmgµ0 (G.15)

and where now µ0 = 1/r0

(v) Eq.(5.8), equation of the orbit.
First express (5.8) as

d2µ

dφ2
+ µ =

γmg

h2
+ 3αµ2 (G.16)

To reduce (G.16) to its classical equivalent put α = 0 and then put

γmg =
F

m0µ2
(G.17)

to yield
d2µ

dφ2
+ µ =

F

m0h2µ2
(G.18)

the classical equation in mechanics.

Appendix A
(vi) Eq.(A.4), The equation of free planar motion in the axes of D0.
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Substituting for α from (4.6) gives

d2r

dt2
= −

γmg

(
r − γmg

c2

)
(
r + γmg

c2

)3 +
3γmg

(
dr
dt

)2

c2

(
r2 −

γ2m2
g

c4

) +
(
r − γmg

c2

)(dφ

dt

)2

(G.19)

and then assuming c to be infinitely large reduces this to the classical equation

d2r

dt2
= −γmg

r2
+ r

(
dφ

dt

)2

(G.20)
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